Contact-Based Model for Epidemic Spreading on Temporal Networks

被引:41
作者
Koher, Andreas [1 ]
Lentz, Hartmut H. K. [2 ]
Gleeson, James P. [3 ]
Hoevel, Philipp [1 ,4 ]
机构
[1] Tech Univ Berlin, Inst Theoret Phys, Hardenbergstr 36, D-10623 Berlin, Germany
[2] Friedrich Loeffler Inst, Inst Epidemiol, Sudufer 10, D-17493 Greifswald, Germany
[3] Univ Limerick, Dept Math & Stat, MACSI, Limerick, Ireland
[4] Univ Coll Cork, Sch Math Sci, Western Rd, Cork T12 XF64, Ireland
基金
爱尔兰科学基金会;
关键词
INDIVIDUAL-BASED APPROACH; MARKOVIAN EPIDEMICS; INFECTIOUS-DISEASE; COMPLEX;
D O I
10.1103/PhysRevX.9.031017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a contact-based model to study the spreading of epidemics by means of extending the dynamic message-passing approach to temporal networks. The shift in perspective from node-to edge-centric quantities enables accurate modeling of Markovian susceptible-infected-recovered outbreaks on time-varying trees, i.e., temporal networks with a loop-free underlying topology. On arbitrary graphs, the proposed contact-based model incorporates potential structural and temporal heterogeneities of the contact network and improves analytic estimations with respect to the individual-based (node-centric) approach at a low computational and conceptual cost. Within this new framework, we derive an analytical expression for the epidemic threshold on temporal networks and demonstrate the feasibility of this method on empirical data.
引用
收藏
页数:20
相关论文
共 75 条
[1]   Containing Epidemic Outbreaks by Message-Passing Techniques [J].
Altarelli, F. ;
Braunstein, A. ;
Dall'Asta, L. ;
Wakeling, J. R. ;
Zecchina, R. .
PHYSICAL REVIEW X, 2014, 4 (02)
[2]   Bayesian Inference of Epidemics on Networks via Belief Propagation [J].
Altarelli, Fabrizio ;
Braunstein, Alfredo ;
Dall'Asta, Luca ;
Lage-Castellanos, Alejandro ;
Zecchina, Riccardo .
PHYSICAL REVIEW LETTERS, 2014, 112 (11)
[3]  
Bailey Norman TJ, 1975, The Mathematical Theory of Infectious Diseases and Its Applications
[4]   The architecture of complex weighted networks [J].
Barrat, A ;
Barthélemy, M ;
Pastor-Satorras, R ;
Vespignani, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (11) :3747-3752
[5]  
Bokharaie V., 2010, P INT S MATH THEOR N, P1717
[6]   The Hidden Geometry of Complex, Network-Driven Contagion Phenomena [J].
Brockmann, Dirk ;
Helbing, Dirk .
SCIENCE, 2013, 342 (6164) :1337-1342
[7]   Solving the Dynamic Correlation Problem of the Susceptible-Infected-Susceptible Model on Networks [J].
Cai, Chao-Ran ;
Wu, Zhi-Xi ;
Chen, Michael Z. Q. ;
Holme, Petter ;
Guan, Jian-Yue .
PHYSICAL REVIEW LETTERS, 2016, 116 (25)
[8]  
Casteigts A, 2012, INT J PARALLEL EMERG, V27, P387, DOI 10.1007/978-3-642-22450-8_27
[9]   Epidemic thresholds in real networks [J].
Chakrabarti, Deepayan ;
Wang, Yang ;
Wang, Chenxi ;
Leskovec, Jurij ;
Faloutsos, Christos .
ACM TRANSACTIONS ON INFORMATION AND SYSTEM SECURITY, 2008, 10 (04)
[10]   Temporal Percolation of the Susceptible Network in an Epidemic Spreading [J].
Daniel Valdez, Lucas ;
Alejandro Macri, Pablo ;
Adriana Braunstein, Lidia .
PLOS ONE, 2012, 7 (09)