Self-generated magnetic fields in blast-wave driven Rayleigh-Taylor experiments

被引:2
作者
Flaig, Markus [1 ]
Plewa, Tomasz [1 ]
机构
[1] Florida State Univ, Tallahassee, FL 32306 USA
关键词
Hydrodynamics; Hydrodynamic instabilities; Laboratory astrophysics; Rayleigh-Taylor; HEDP laboratory experiments; INSTABILITY; RELEVANT; HYDRODYNAMICS; SIMULATION;
D O I
10.1016/j.hedp.2015.01.005
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the effect of self-generated magnetic fields in two-dimensional computer models of blast-wave driven high-energy density Rayleigh-Taylor instability (RTI) experiments. Previous works [1,2] suggested that such fields have the potential to influence the RTI morphology and mixing. When neglecting the friction force between electrons and ions, we do indeed find that dynamically important (beta less than or similar to 10(3)) magnetic fields are generated. However, in the more realistic case where the friction force is accounted for, the resulting fields are much weaker, beta greater than or similar to 10(5), and can no longer influence the dynamics of the system. Although we find no evidence for dynamically important magnetic fields being created in the two-dimensional case studied here, the situation might be different in a three-dimensional setup, which will be addressed in a future study. Published by Elsevier B.V.
引用
收藏
页码:46 / 51
页数:6
相关论文
共 14 条
  • [1] The Braginskii model of the Rayleigh-Taylor instability. I. Effects of self-generated magnetic fields and thermal conduction in two dimensions
    Modica, Frank
    Plewa, Tomasz
    Zhiglo, Andrey
    HIGH ENERGY DENSITY PHYSICS, 2013, 9 (04) : 767 - 780
  • [2] The possible effects of magnetic fields on laser experiments of Rayleigh-Taylor instabilities
    Fryxell, B.
    Kuranz, C. C.
    Drake, R. P.
    Grosskopf, M. J.
    Budde, A.
    Plewa, T.
    Hearn, N.
    Hansen, J. F.
    Miles, A. R.
    Knauer, J.
    HIGH ENERGY DENSITY PHYSICS, 2010, 6 (02) : 162 - 165
  • [3] TWO-DIMENSIONAL BLAST-WAVE-DRIVEN RAYLEIGH-TAYLOR INSTABILITY: EXPERIMENT AND SIMULATION
    Kuranz, C. C.
    Drake, R. P.
    Harding, E. C.
    Grosskopf, M. J.
    Robey, H. F.
    Remington, B. A.
    Edwards, M. J.
    Miles, A. R.
    Perry, T. S.
    Blue, B. E.
    Plewa, T.
    Hearn, N. C.
    Knauer, J. P.
    Arnett, D.
    Leibrandt, D. R.
    ASTROPHYSICAL JOURNAL, 2009, 696 (01) : 749 - 759
  • [4] ON THE STABILIZING EFFECT OF THE MAGNETIC FIELDS IN THE MAGNETIC RAYLEIGH-TAYLOR PROBLEM
    Jiang, Fei
    Jiang, Song
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (01) : 491 - 540
  • [5] Rayleigh-Taylor Instability in Interacting Supernovae: Implications for Synchrotron Magnetic Fields
    Duffell, Paul C.
    Kasen, Daniel
    ASTROPHYSICAL JOURNAL, 2017, 842 (01)
  • [6] Competition of magnetic reconnections in self-generated and external magnetic fields
    Sakai, K.
    Huang, T. Y.
    Khasanah, N.
    Bolouki, N.
    Chu, H. H.
    Moritaka, T.
    Sakawa, Y.
    Sano, T.
    Tomita, K.
    Matsukiyo, S.
    Morita, T.
    Takabe, H.
    Yamazaki, R.
    Yasuhara, R.
    Habara, H.
    Kuramitsu, Y.
    HIGH ENERGY DENSITY PHYSICS, 2024, 52
  • [7] The mitigating effect of magnetic fields on Rayleigh-Taylor unstable inertial confinement fusion plasmas
    Srinivasan, Bhuvana
    Tang, Xian-Zhu
    PHYSICS OF PLASMAS, 2013, 20 (05)
  • [8] Flash code simulations of Rayleigh-Taylor and Richtmyer-Meshkov instabilities in laser-driven experiments
    Hearn, Nathan C.
    Plewa, Tomasz
    Drake, R. Paul
    Kuranz, Carolyn
    ASTROPHYSICS AND SPACE SCIENCE, 2007, 307 (1-3) : 227 - 231
  • [9] Flash Code Simulations of Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Laser-Driven Experiments
    Nathan C. Hearn
    Tomasz Plewa
    R. Paul Drake
    Carolyn Kuranz
    Astrophysics and Space Science, 2007, 307 : 227 - 231
  • [10] Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons
    Nakatsutsumi, M.
    Sentoku, Y.
    Korzhimanov, A.
    Chen, S. N.
    Buffechoux, S.
    Kon, A.
    Atherton, B.
    Audebert, P.
    Geissel, M.
    Hurd, L.
    Kimmel, M.
    Rambo, P.
    Schollmeier, M.
    Schwarz, J.
    Starodubtsev, M.
    Gremillet, L.
    Kodama, R.
    Fuchs, J.
    NATURE COMMUNICATIONS, 2018, 9