Fourier multipliers and integro-differential equations in Banach spaces

被引:55
作者
Keyantuo, V
Lizama, C
机构
[1] Univ Puerto Rico, Fac Nat Sci, Dept Math, Rio Piedras, PR 00931 USA
[2] Univ Santiago Chile, Fac Ciencias, Dept Matemat, Santiago, Chile
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2004年 / 69卷
关键词
D O I
10.1112/S0024610704005198
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Operator-valued Fourier multiplier theorems are used to establish maximal regularity results for an integro-differential equation with infinite delay in Banach spaces. Results are obtained under general conditions for periodic solutions in the vector-valued Lebesgue and Besov spaces. The latter scale includes in particular the Holder spaces C-alpha, 0 < a < 1.
引用
收藏
页码:737 / 750
页数:14
相关论文
共 19 条
[1]  
Amann H., 1995, MONOGRAPHS MATH, V89
[2]  
[Anonymous], 1967, GRUNDLEHREN MATH WIS
[3]   Fourier multipliers for Holder continuous functions and maximal regularity [J].
Arendt, W ;
Batty, C ;
Bu, SQ .
STUDIA MATHEMATICA, 2004, 160 (01) :23-51
[4]   The operator-valued Marcinkiewicz multiplier theorem and maximal regularity [J].
Arendt, W ;
Bu, SQ .
MATHEMATISCHE ZEITSCHRIFT, 2002, 240 (02) :311-343
[5]  
Arendt W., 2001, MONOGRAPHS MATH, V96
[6]  
ARENDT W, 2001, ULM SEM 2001, V6, P26
[7]  
Bourgain J., 1986, PROBABILITY THEORY H
[8]  
Clément P, 2000, STUD MATH, V138, P135
[9]   EXISTENCE AND REGULARITY RESULTS FOR AN INTEGRAL-EQUATION WITH INFINITE DELAY IN A BANACH-SPACE [J].
CLEMENT, P ;
DAPRATO, G .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1988, 11 (04) :480-500
[10]   EQUIPRESENCE AND CONSTITUTIVE EQUATIONS FOR RIGID HEAT CONDUCTORS [J].
COLEMAN, BD ;
GURTIN, ME .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1967, 18 (02) :199-&