Identifying influential spreaders in large-scale networks based on evidence theory

被引:16
作者
Liu, Dong [1 ,2 ]
Nie, Hao [1 ,2 ]
Zhao, Jing [1 ,2 ]
Wang, Qingchen [1 ,2 ]
机构
[1] Henan Normal Univ, Sch Comp & Informat Engn, Xinxiang 453007, Henan, Peoples R China
[2] Engn Technol Res Ctr Comp Intelligence & Data Min, Xinxiang 453007, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Large-scale networks; Influential spreaders; Dempster-Shafer evidence theory; Neighbor information; D-2SN centrality; SOCIAL NETWORKS; INFLUENCE MAXIMIZATION; NODES; CENTRALITY; IDENTIFICATION;
D O I
10.1016/j.neucom.2019.06.030
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Identifying the most influential spreaders is an important issue in epidemic spreading, viral marketing, and controlling the spreading process of information. Thus, methods for identifying influential spreaders in complex networks have received increasing attention from researchers. During recent decades, researchers have proposed many methods. However, each of these methods has advantages and disadvantages. In this paper, we propose a new efficient algorithm for identifying influential spreaders based on the Dempster-Shafer (D-S) evidence theory, which is a complete theory that deal with uncertainty or imprecision. We call our proposed algorithm D-2SN, which trades off between the degree (D) and the 2-step neighbor information (2SN) of every node in a network. Specifically, the influence of both the degree and the 2SN of each node are represented by a basic probability assignment (BPA). D-2SN is determined by the fusion of these BPAs. Since the algorithm considers not only the topological structure of each node, but also its neighbors' structure, it is a good choice to balance cost and performance. In addition, it also exhibits very low time complexity O(< k > n), which makes it applicable to large-scale networks. To evaluate the performance of D-2SN, we employ the Independent Cascade (IC) and Liner Threshold (LT) models to examine the spreading efficiency of each node and compare D-2SN with several classic methods in eight real-world networks. Extensive experiments demonstrate the superiority of D-2SN to other baseline methods. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:466 / 475
页数:10
相关论文
共 50 条
  • [31] Identifying influential spreaders in artificial complex networks
    Wang Pei
    Tian Chengeng
    Lu Jun-an
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2014, 27 (04) : 650 - 665
  • [32] Identifying a set of influential spreaders in complex networks
    Zhang, Jian-Xiong
    Chen, Duan-Bing
    Dong, Qiang
    Zhao, Zhi-Dan
    SCIENTIFIC REPORTS, 2016, 6
  • [33] Identifying influential spreaders in complex networks by an improved gravity model
    Li, Zhe
    Huang, Xinyu
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [34] Identifying Influential Spreaders in Complex Networks by an Improved Spectralrank Algorithm
    Liu, Chunfang
    Wang, Pei
    Chen, Aimin
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 736 - 741
  • [35] Identifying Influential Spreaders in Social Networks via Normalized Local Structure Attributes
    Zhao, Xiaohui
    Liu, Fang'ai
    Xing, Shuning
    Wang, Qianqian
    IEEE ACCESS, 2018, 6 : 66095 - 66104
  • [36] Identifying influential nodes in weighted networks based on evidence theory
    Wei, Daijun
    Deng, Xinyang
    Zhang, Xiaoge
    Deng, Yong
    Mahadevan, Sankaran
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (10) : 2564 - 2575
  • [37] Identifying influential spreaders by weight degree centrality in complex networks
    Liu, Yang
    Wei, Bo
    Du, Yuxian
    Xiao, Fuyuan
    Deng, Yong
    CHAOS SOLITONS & FRACTALS, 2016, 86 : 1 - 7
  • [38] Identifying influential spreaders in complex networks through local effective spreading paths
    Wang, Xiaojie
    Zhang, Xue
    Yi, Dongyun
    Zhao, Chengli
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
  • [39] A Community-Based Approach to Identifying Influential Spreaders
    Zhao, Zhiying
    Wang, Xiaofan
    Zhang, Wei
    Zhu, Zhiliang
    ENTROPY, 2015, 17 (04) : 2228 - 2252
  • [40] Effective and efficient identifying influential nodes in large scale networks by structural entropy
    Huang, Yuxin
    Li, Chunping
    Xiang, Yan
    Xian, Yantuan
    Li, Pu
    Yu, Zhengtao
    CHAOS SOLITONS & FRACTALS, 2025, 196