The eXtended finite element method for cracked hyperelastic materials: A convergence study

被引:13
作者
Karoui, A. [1 ]
Mansouri, K. [2 ]
Renard, Y. [2 ]
Arfaoui, M. [3 ]
机构
[1] Univ Tunis El Manar, Ecole Natl Ingn Tunis, LR Lab Genie Civil 03 ES05, Tunis 1002, Tunisia
[2] Univ Lyon, CNRS, INSA Lyon, ICJ UMR5208,LaMCoS UMR5259, F-69621 Villeurbanne, France
[3] Univ Tunis El Manar, Ecole Natl Ingn Tunis, LR Lab Mecan Appl & & Ingn 11 ES19, Tunis 1002, Tunisia
关键词
extended finite element method; hyperelastic material; crack tip; asymptotic displacement; large strain; ELASTOSTATIC FIELD; STRESS-ANALYSIS; STRAIN PROBLEMS; TIP ENRICHMENT; PLANE-STRAIN; X-FEM; DEFORMATION; GROWTH;
D O I
10.1002/nme.4736
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present work aims to look into the contribution of the extended finite element method for large deformation of cracked bodies in plane strain approximation. The unavailability of sufficient mathematical tools and proofs for such problem makes the study exploratory. First, the asymptotic solution is presented. Then, a numerical analysis is realized to verify the pertinence of solution given by the asymptotic procedure, because it serves as an eXtended finite element method enrichment basis. Finally, a convergence study is carried out to show the contribution of the exploitation of such method. Copyright (C) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:222 / 242
页数:21
相关论文
共 33 条
[21]   THE SINGULAR ELASTOSTATIC FIELD DUE TO A CRACK IN RUBBER-LIKE MATERIALS [J].
LE, KC ;
STUMPF, H .
JOURNAL OF ELASTICITY, 1993, 32 (03) :183-222
[22]   Stress analysis around crack tips in finite strain problems using the extended finite element method [J].
Legrain, G ;
Moës, N ;
Verron, E .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2005, 63 (02) :290-314
[23]   3D corrected XFEM approach and extension to finite deformation theory [J].
Loehnert, S. ;
Mueller-Hoeppe, D. S. ;
Wriggers, P. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 86 (4-5) :431-452
[24]  
Moës N, 1999, INT J NUMER METH ENG, V46, P131, DOI 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO
[25]  
2-J
[26]  
Moes N., 1999, REV EUROPEENNE ELEME, V11, P131
[27]  
Mohammadi S., 2008, EXTENDED FINITE ELEM
[28]   Optimal convergence analysis for the extended finite element method [J].
Nicaise, Serge ;
Renard, Yves ;
Chahine, Elie .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 86 (4-5) :528-548
[29]   SOLUTION OF SOME FINITE PLANE-STRAIN PROBLEMS FOR COMPRESSIBLE ELASTIC SOLIDS [J].
OGDEN, RW ;
ISHERWOOD, DA .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1978, 31 (MAY) :219-249
[30]   ESTIMATING SINGULARITY POWERS WITH FINITE-ELEMENTS [J].
STAAB, GH .
COMPUTERS & STRUCTURES, 1983, 17 (01) :73-78