A Hilbert-type integral inequality in the whole plane related to the hypergeometric function and the beta function

被引:68
作者
Rassias, Michael Th. [1 ,2 ]
Yang, Bicheng [3 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] ETH, Dept Math, CH-8092 Zurich, Switzerland
[3] Guangdong Univ Educ, Dept Math, Guangzhou 510303, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Hilbert-type integral inequality; Weight function; Equivalent form; Hypergeornetric function; Beta function; OPERATOR; NORM;
D O I
10.1016/j.jmaa.2015.04.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new Hilbert-type integral inequality in the whole plane with the non-homogeneous kernel and parameters is given. The constant factor related to the hypergeometric function and the beta function is proved to be the best possible. As applications, equivalent forms, the reverses, some particular examples, two kinds of Hardy-type inequalities, and operator expressions are considered. (C) 2015 Published by Elsevier Inc.
引用
收藏
页码:1286 / 1308
页数:23
相关论文
共 31 条
  • [1] Debnath L., 2012, INT J MATH MATH SC, P1
  • [2] HARDY CH, 1934, INEQUALITIES
  • [3] He B., 2011, Tamsui Oxf. J. Inf. Math. Sci, V27, P75
  • [4] [和炳 He Bing], 2010, [数学的实践与认识, Mathematics in Practice and Theory], V40, P203
  • [5] Parameterized Hilbert-Type Integral Inequalities in the Whole Plane
    Huang, Qiliang
    Wu, Shanhe
    Yang, Bicheng
    [J]. SCIENTIFIC WORLD JOURNAL, 2014,
  • [6] Knang J. C., 2001, APPL INEQUALITIES
  • [7] Kuang J. C., 1996, Introduction to Real Analysis
  • [8] Some properties of a hypergeometric function which appear in an approximation problem
    Milovanovic, Gradimir V.
    Rassias, Michael Th.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2013, 57 (04) : 1173 - 1192
  • [9] Milovanovic GV., 2014, Analytic Number Theory, Approximation Theory, and Special Functions
  • [10] Mitrinovic D. S., 1991, INEQUALITIES FUNCTIO