Adaptive ADMM for Dictionary Learning in Convolutional Sparse Representation

被引:23
作者
Peng, Guan-Ju [1 ]
机构
[1] Natl Chung Hsing Univ, Dept Appl Math, Taichung 402, Taiwan
关键词
Convolutional dictionary learning; convolutional sparse coding; non-convex and non-smooth optimization; ALTERNATING DIRECTION METHOD; RAIN STREAKS REMOVAL; LEAST-SQUARES; THRESHOLDING ALGORITHM; VARIABLE SELECTION; IMAGE; OPTIMIZATION; CONVERGENCE;
D O I
10.1109/TIP.2019.2896541
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel approach to convolutional sparse representation with the aim of resolving the dictionary learning problem. The proposed method, referred to as the adaptive alternating direction method of multipliers (AADMM), employs constraints comprising non-convex, non-smooth terms, such as the l(0)-norm imposed on the coefficients and the unit-norm sphere imposed on the length of each dictionary element. The proposed scheme incorporates a novel parameter adaption scheme that enables ADMM to achieve convergence more quickly, as evidenced by numerical and theoretical analysis. In experiments involving image signal applications, the dictionaries learned using AADMM outperformed those learned using comparable dictionary learning methods.
引用
收藏
页码:3408 / 3422
页数:15
相关论文
共 50 条
[41]   Learning Sparse PCA with Stabilized ADMM Method on Stiefel Manifold [J].
Tan, Mingkui ;
Hu, Zhibin ;
Yan, Yuguang ;
Cao, Jiezhang ;
Gong, Dong ;
Wu, Qingyao .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (03) :1078-1088
[42]   Sparse Adaptive Iteratively-Weighted Thresholding Algorithm (SAITA) for Lp-Regularization Using the Multiple Sub-Dictionary Representation [J].
Li, Yunyi ;
Zhang, Jie ;
Fan, Shangang ;
Yang, Jie ;
Xiong, Jian ;
Cheng, Xiefeng ;
Sari, Hikmet ;
Adachi, Fumiyuki ;
Gui, Guan .
SENSORS, 2017, 17 (12)
[43]   Motion deblurring via multiscale residual convolutional dictionary learning [J].
Zhang, Yi ;
Chandler, Damon M. ;
Farias, Mylene C. Q. .
DIGITAL SIGNAL PROCESSING, 2025, 165
[44]   IPGM: Inertial Proximal Gradient Method for Convolutional Dictionary Learning [J].
Li, Jing ;
Wei, Xiao ;
Wang, Fengpin ;
Wang, Jinjia .
ELECTRONICS, 2021, 10 (23)
[45]   Learning a Non-Locally Regularized Convolutional Sparse Representation for Joint Chromatic and Polarimetric Demosaicking [J].
Luo, Yidong ;
Zhang, Junchao ;
Shao, Jianbo ;
Tian, Jiandong ;
Ma, Jiayi .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 :5029-5044
[46]   Computing Sparse Representation in a Highly Coherent Dictionary Based on Difference of and [J].
Lou, Yifei ;
Yin, Penghang ;
He, Qi ;
Xin, Jack .
JOURNAL OF SCIENTIFIC COMPUTING, 2015, 64 (01) :178-196
[47]   Augmented Lagrangian-Based Sparse Representation Method with Dictionary Updating for Image Deblurring [J].
Liu, Qiegen ;
Liang, Dong ;
Song, Ying ;
Luo, Jianhua ;
Zhu, Yuemin ;
Li, Wenshu .
SIAM JOURNAL ON IMAGING SCIENCES, 2013, 6 (03) :1689-1718
[48]   ONLINE CONVOLUTIONAL DICTIONARY LEARNING FOR MULTIMODAL IMAGING [J].
Degraux, Kevin ;
Kamilov, Ulugbek S. ;
Boufounos, Petros T. ;
Liu, Dehong .
2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, :1617-1621
[49]   Convolutional Dictionary Learning via Local Processing [J].
Papyan, Vardan ;
Romano, Yaniv ;
Sulam, Jeremias ;
Elad, Michael .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :5306-5314
[50]   Multi-Modal Convolutional Dictionary Learning [J].
Gao, Fangyuan ;
Deng, Xin ;
Xu, Mai ;
Xu, Jingyi ;
Dragotti, Pier Luigi .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 :1325-1339