Thyroid hormones and mitochondria

被引:64
作者
Goglia, F
Silvestri, E
Lanni, A
机构
[1] Univ Sannio, Fac Sci, I-82100 Benevento, Italy
[2] Univ Naples 2, Dipartimento Sci Vita, I-81100 Caserta, Italy
关键词
thyroid hormone; diiodothyronine; mitochondrion; uncoupling protein; energy metabolism;
D O I
10.1023/A:1016056905347
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Because of their central role in the regulation of energy-transduction, mitochondria, the major site of oxidative processes within the cell, are considered a likely subcellular target for the action that thyroid hormones exert on energy metabolism. However, the mechanism underlying the regulation of basal metabolic rate (BMR) by thyroid hormones still remains unclear. It has been suggested that these hormones might uncouple substrate oxidation from ATP synthesis, but there are no clear-cut data to support this idea. Two iodothyronines have been identified as effectors of the actions of thyroid hormones on energy metabolism: 3',3,5-triiodo-L-thyronine (T3) and 3,5-diiodo-L-thyronine (T2). Both have significant effects on BMR, but their mechanisms of action are not identical. T3 acts on the nucleus to influence the expression of genes involved in the regulation of cellular metabolism and mitochondria function; 3,5-T2, on the other hand, acts by directly influencing the mitochondrial energy-transduction apparatus. A molecular determinant of the effects of T3 could be uncoupling protein-3 (UCP-3), while the cytochrome-c oxidase complex is a possible target for 3,5-T2. In conclusion, it is likely that iodothyronines regulate energy metabolism by both short-term and long-term mechanisms, and that they act in more than one way in affecting mitochondrial functions.
引用
收藏
页码:17 / 32
页数:16
相关论文
共 68 条
[1]  
[Anonymous], 2000, WERNER INGBARS THYRO
[2]   3,5-diiodothyronine binds to subunit Va of cytochrome-c oxidase and abolishes the allosteric inhibition of respiration by ATP [J].
Arnold, S ;
Goglia, F ;
Kadenbach, B .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1998, 252 (02) :325-330
[3]   The allosteric ATP-inhibition of cytochrome c oxidase activity is reversibly switched on by cAMP-dependent phosphorylation [J].
Bender, E ;
Kadenbach, B .
FEBS LETTERS, 2000, 466 (01) :130-134
[4]   Uncoupling proteins 2 and 3 - Potential regulators of mitochondrial energy metabolism [J].
Boss, O ;
Hagen, T ;
Lowell, BB .
DIABETES, 2000, 49 (02) :143-156
[5]   Uncoupling protein-3: A new member of the mitochondrial carrier family with tissue-specific expression [J].
Boss, O ;
Samec, S ;
PaoloniGiacobino, A ;
Rossier, C ;
Dulloo, A ;
Seydoux, J ;
Muzzin, P ;
Giacobino, JP .
FEBS LETTERS, 1997, 408 (01) :39-42
[6]   Homologues of the uncoupling protein from brown adipose tissue (UCP1): UCP2, UCP3, BMCP1 and UCP4 [J].
Bouillaud, F ;
Couplan, E ;
Pecqueur, C ;
Ricquier, D .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2001, 1504 (01) :107-119
[7]   THE CAUSES AND FUNCTIONS OF MITOCHONDRIAL PROTON LEAK [J].
BRAND, MD ;
CHIEN, LF ;
AINSCOW, EK ;
ROLFE, DFS ;
PORTER, RK .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1994, 1187 (02) :132-139
[8]   THE MECHANISM OF THE INCREASE IN MITOCHONDRIAL PROTON PERMEABILITY INDUCED BY THYROID-HORMONES [J].
BRAND, MD ;
STEVERDING, D ;
KADENBACH, B ;
STEVENSON, PM ;
HAFNER, RP .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1992, 206 (03) :775-781
[9]   THE PROTON LEAK ACROSS THE MITOCHONDRIAL INNER MEMBRANE [J].
BRAND, MD .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1018 (2-3) :128-133
[10]   The proton permeability of liposomes made from mitochondrial inner membrane phospholipids: Comparison with isolated mitochondria [J].
Brookes, PS ;
Rolfe, DFS ;
Brand, MD .
JOURNAL OF MEMBRANE BIOLOGY, 1997, 155 (02) :167-174