Quantum-state tomography for spin-l systems -: art. no. 042108

被引:25
作者
Hofmann, HF [1 ]
Takeuchi, S [1 ]
机构
[1] Hokkaido Univ, Res Inst Elect Sci, Japan Sci & Technol Corp, PRESTO,Kita Ku, Sapporo, Hokkaido 0600812, Japan
来源
PHYSICAL REVIEW A | 2004年 / 69卷 / 04期
关键词
D O I
10.1103/PhysRevA.69.042108
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that the density matrix of a spin- l system can be described entirely in terms of the measurement statistics of projective spin measurements along a minimum of 4l+1 different spin directions. It is thus possible to represent the complete quantum statistics of any N-level system within the spherically symmetric three-dimensional space defined by the spin vector. An explicit method for reconstructing the density matrix of a spin-1 system from the measurement statistics of five nonorthogonal spin directions is presented and the generalization to spin- l systems is discussed.
引用
收藏
页码:042108 / 1
页数:8
相关论文
共 50 条
[21]   Modelling decoherence in quantum spin systems (vol 19, art. no. 083202, 2007) [J].
Zhang, Wenxian ;
Konstantinidis, N. ;
Al-Hassanieh, K. A. ;
Dobrovitski, V. V. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (19)
[22]   Cluster algorithms for general-S quantum spin systems -: art. no. 047203 [J].
Todo, S ;
Kato, K .
PHYSICAL REVIEW LETTERS, 2001, 87 (04) :472031-472034
[23]   Teleportation in a nuclear spin quantum computer -: art. no. 042312 [J].
Berman, GP ;
López, GV ;
Tsifrinovich, VI .
PHYSICAL REVIEW A, 2002, 66 (04) :7
[24]   Spin relaxation in GaAs quantum dots -: art. no. 115318 [J].
Cheng, JL ;
Wu, MW ;
Lü, C .
PHYSICAL REVIEW B, 2004, 69 (11)
[25]   Probing the spin state of a single magnetic ion in an individual quantum dot -: art. no. 207403 [J].
Besombes, L ;
Léger, Y ;
Maingault, L ;
Ferrand, D ;
Mariette, H ;
Cibert, J .
PHYSICAL REVIEW LETTERS, 2004, 93 (20) :207403-1
[26]   Quantum dot spin effect on the conductance of a quantum wire -: art. no. 233310 [J].
Davidovich, MA ;
Anda, EV ;
Büsser, CA ;
Chiappe, G .
PHYSICAL REVIEW B, 2002, 65 (23) :1-4
[27]   Quantum-state tomography and discrete wigner function [J].
1600, American Inst of Physics, Woodbury, NY, USA (74)
[28]   Optimal quantum-state tomography with known parameters [J].
Petz, Denes ;
Ruppert, Laszlo .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (08)
[29]   Discrete Wigner function and quantum-state tomography [J].
Leonhardt, U .
PHYSICAL REVIEW A, 1996, 53 (05) :2998-3013
[30]   Quantum-state tomography using a single apparatus [J].
Mehmani, B. ;
Allahverdyan, A. E. ;
Nieuwenhuizen, Th. M. .
PHYSICAL REVIEW A, 2008, 77 (03)