Multi-input Schrodinger equation: Controllability, tracking, and application to the quantum angular momentum

被引:42
作者
Boscain, Ugo [1 ]
Caponigro, Marco [2 ]
Sigalotti, Mario [3 ]
机构
[1] Ecole Polytech, CNRS, CMAP, F-91128 Palaiseau, France
[2] Conservatoire Natl Arts & Metiers, Equipe M2N, Paris, France
[3] Ecole Polytech, CMAP, Palaiseau, France
基金
欧洲研究理事会;
关键词
Quantum control; Bilinear Schrodinger equation; Galerkin approximations; Quantum angular momentum; INDUCED POPULATION TRANSFER; CONTROL-SYSTEMS;
D O I
10.1016/j.jde.2014.02.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a sufficient condition for approximate controllability of the bilinear discrete-spectrum Schrodinger equation in the multi-input case. The controllability result extends to simultaneous controllability, approximate controllability in Hs, and tracking in modulus. The sufficient condition is more general than those present in the literature even in the single-input case and allows the spectrum of the uncontrolled operator to be very degenerate (e.g. to have multiple eigenvalues or equal gaps among different pairs of eigenvalues). We apply the general result to a rotating polar linear molecule, driven by three orthogonal external fields. A remarkable property of this model is the presence of infinitely many degeneracies and resonances in the spectrum. (c) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:3524 / 3551
页数:28
相关论文
共 34 条
[1]  
Adami R, 2005, IEEE DECIS CONTR P, P1080
[2]  
ANDREI A, 2004, ENCYCL MATH SCI, V87, pR2
[3]  
[Anonymous], 2008, APPL MATH NONLINEAR
[4]  
[Anonymous], LECT NOTES CHEM
[5]   CONTROLLABILITY FOR DISTRIBUTED BILINEAR-SYSTEMS [J].
BALL, JM ;
MARSDEN, JE ;
SLEMROD, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1982, 20 (04) :575-597
[6]   Controllability of a quantum particle in a moving potential well [J].
Beauchard, K ;
Coron, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 232 (02) :328-389
[7]   Semi-global weak stabilization of bilinear Schrodinger equations [J].
Beauchard, Karine ;
Nersesyan, Vahagn .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (19-20) :1073-1078
[8]   Local controllability of 1D linear and nonlinear Schrodinger equations with bilinear control [J].
Beauchard, Karine ;
Laurent, Camille .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 94 (05) :520-554
[9]   Finite Controllability of Infinite-Dimensional Quantum Systems [J].
Bloch, Anthony M. ;
Brockett, Roger W. ;
Rangan, Chitra .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (08) :1797-1805
[10]   A Weak Spectral Condition for the Controllability of the Bilinear Schrodinger Equation with Application to the Control of a Rotating Planar Molecule [J].
Boscain, U. ;
Caponigro, M. ;
Chambrion, T. ;
Sigalotti, M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 311 (02) :423-455