Characterization and Analysis of 1.3-μm InAs/InGaAs Self-Assembled Quantum Dot Lasers

被引:3
作者
Liu, Chongyang [1 ]
Wang, Hong [1 ,2 ]
Meng, Qianqian [1 ]
机构
[1] Nanyang Technol Univ, Temasek Labs, Singapore 637553, Singapore
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 637553, Singapore
关键词
Hakki-Paoli method; modal gain; photoluminescence (PL); quantum dot (QD) laser; rate equation; semiconductor laser; THRESHOLD CURRENT-DENSITY; TEMPERATURE-DEPENDENCE; GAIN; PHOTOLUMINESCENCE; PERFORMANCE; WELL;
D O I
10.1109/TNANO.2013.2288320
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
High performance 1.3-mu m GaAs-based InAs/InGaAs quantum dot (QD) lasers have been fabricated. The QD lasers have demonstrated low threshold current, high output power as well as high temperature operation. Temperature-dependent (20-100 degrees C) and excitation power-dependent (12-700 mW) photoluminescence (PL) measurements have been carried out on the QD laser structures. Both ground state (GS) and excited state (ES) luminescence has been observed in the PL spectra as well as in the lasing spectra. Rate equations were used to interpret the PL behavior of the QD structures. High radiative recombination efficiency in the QD structure has been verified even at 100 degrees C. The excitonic modal gain has been calculated and compared with the experimentally obtained modal gain value by the Hakki-Paoli method from the QD laser with good agreement.
引用
收藏
页码:446 / 451
页数:6
相关论文
共 33 条
[1]   MULTIDIMENSIONAL QUANTUM WELL LASER AND TEMPERATURE-DEPENDENCE OF ITS THRESHOLD CURRENT [J].
ARAKAWA, Y ;
SAKAKI, H .
APPLIED PHYSICS LETTERS, 1982, 40 (11) :939-941
[2]   Temperature-Dependent Characteristics of Single-Mode InAs Submonolayer Quantum-Dot Lasers [J].
Arsenijevic, Dejan ;
Liu, Chongyang ;
Payusov, Alexey ;
Stubenrauch, Mirko ;
Bimberg, Dieter .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2012, 24 (11) :906-908
[3]   Temperature dependence of the threshold current density of a quantum dot laser [J].
Asryan, LV ;
Suris, RA .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1998, 34 (05) :841-850
[4]   InGaAs-GaAs quantum-dot lasers [J].
Bimberg, D ;
Kirstaedter, N ;
Ledentsov, NN ;
Alferov, ZI ;
Kopev, PS ;
Ustinov, VM .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1997, 3 (02) :196-205
[5]   Quantum dots: promises and accomplishments [J].
Bimberg, Dieter ;
Pohl, Udo W. .
MATERIALS TODAY, 2011, 14 (09) :388-397
[6]   Improved Performance of 1.3-μm Multilayer P-Doped InAs/InGaAs Quantum Dot Lasers Using Rapid Thermal Annealing [J].
Cao, Qi ;
Tong, Cunzhu ;
Yoon, Soon Fatt ;
Liu, Chongyang ;
Ngo, Chun Yong .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2012, 11 (02) :231-235
[7]   Carrier distribution, gain, and lasing in 1.3-μm InAs-InGaAs quantum-dot lasers [J].
Dikshit, AA ;
Pikal, JM .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2004, 40 (02) :105-112
[8]   High-Speed Low-Noise InAs/InAlGaAs/InP 1.55-μM Quantum-Dot Lasers [J].
Gready, David ;
Eisenstein, Gadi ;
Gilfert, Christian ;
Ivanov, Vitalii ;
Reithmaier, Johann Peter .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2012, 24 (10) :809-811
[9]   GAIN SPECTRA IN GAAS DOUBLE-HETEROSTRUCTURE INJECTION LASERS [J].
HAKKI, BW ;
PAOLI, TL .
JOURNAL OF APPLIED PHYSICS, 1975, 46 (03) :1299-1306
[10]  
Hopfer F., 2008, P SOC PHOTO-OPT INS, V7009