THE FARRELL-JONES CONJECTURE FOR COCOMPACT LATTICES IN VIRTUALLY CONNECTED LIE GROUPS

被引:28
作者
Bartels, A.
Farrell, F. T. [1 ]
Lueck, W. [2 ]
机构
[1] SUNY Binghamton, Dept Math, Binghamton, NY 13902 USA
[2] Univ Bonn, Math Inst, D-53115 Bonn, Germany
关键词
Farrell-Jones Conjecture; K- and L-theory of group rings; cocompact lattices in virtually connected Lie groups; fundamental groups of 3-manifolds; ALGEBRAIC K-THEORY; INFINITE DIHEDRAL GROUP; POLY-(FINITE; TOPOLOGY;
D O I
10.1090/S0894-0347-2014-00782-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:339 / 388
页数:50
相关论文
共 39 条
[1]   PARALLELIZABILITY OF PROPER ACTIONS, GLOBAL K-SLICES AND MAXIMAL COMPACT SUBGROUPS [J].
ABELS, H .
MATHEMATISCHE ANNALEN, 1974, 212 (01) :1-19
[2]  
[Anonymous], 2005, PROGR MATH
[3]  
[Anonymous], 2000, ENCY MATH SCI, V21
[4]  
[Anonymous], 2010, Adv. Lect. Math. (ALM)
[5]   Isomorphism Conjecture for homotopy K-theory and groups acting on trees [J].
Bartels, A ;
Lück, W .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2006, 205 (03) :660-696
[6]   The Farrell-Hsiang method revisited [J].
Bartels, A. ;
Lueck, W. .
MATHEMATISCHE ANNALEN, 2012, 354 (01) :209-226
[7]  
Bartels A., 2009, J DIFFERENT IN PRESS
[8]   Equivariant covers for hyperbolic groups [J].
Bartels, Arthur ;
Lueck, Wolfgang ;
Reich, Holger .
GEOMETRY & TOPOLOGY, 2008, 12 :1799-1882
[9]   The K-theoretic Farrell-Jones conjecture for hyperbolic groups [J].
Bartels, Arthur ;
Lueck, Wolfgang ;
Reich, Holger .
INVENTIONES MATHEMATICAE, 2008, 172 (01) :29-70
[10]   Induction theorems and isomorphism conjectures for K- and L-theory [J].
Bartels, Arthur ;
Lueck, Wolfgang .
FORUM MATHEMATICUM, 2007, 19 (03) :379-406