Refinement of the Binding Site and Mode of Action of the Anticonvulsant Retigabine on KCNQ K+ Channels

被引:113
作者
Lange, Wienke [1 ,2 ]
Geissendoerfer, Jan [2 ]
Schenzer, Anne [1 ]
Groetzinger, Joachim [1 ]
Seebohm, Guiscard [3 ,4 ]
Friedrich, Thomas [2 ]
Schwake, Michael [1 ]
机构
[1] Univ Kiel, Inst Biochem, D-24098 Kiel, Germany
[2] Tech Univ Berlin, Inst Chem, Berlin, Germany
[3] Ruhr Univ Bochum, Lehrstuhl Biochem Rezeptorbiochem 1, Bochum, Germany
[4] Univ Tubingen, Inst Physiol 1, Tubingen, Germany
关键词
POTASSIUM CHANNELS; IDIOPATHIC EPILEPSY; MUTATION; ACTIVATION; CELLS; GENE; SUBUNITS; CURRENTS; EXPRESSION; OPENER;
D O I
10.1124/mol.108.052282
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The discovery of retigabine has provided access to alternative anticonvulsant compounds with a novel mode of action. Acting as potassium channel opener, retigabine exclusively activates neuronal KCNQ-type K+ channels, mainly by shifting the voltage-dependence of channel activation to hyperpolarizing potentials. So far, only parts of the retigabine-binding site have been described, including Trp-265 and Gly-340 ( according to KCNQ3 numbering) within transmembrane segments S5 and S6, respectively. Using a refined chimeric strategy, we additionally identified a Leu-314 within the pore region of KCNQ3 as crucial for the retigabine effect. Both Trp-265 and Leu-314 are likely to interact with the retigabine molecule, representing the upper and lower margins of the putative binding site. Guided by a structural model of KCNQ3, which was constructed based on the Kv1.2 crystal structure, further residues affecting retigabine-binding could be proposed and were experimentally verified as mediators for the action of the compound. These results strongly suggest that, besides Trp-265 and Leu-314, it is highly likely that another S5 residue, Leu-272, which is conserved in all KCNQ subunits, contributes to the binding site in KCNQ3. More importantly, Leu-338, extending from S6 of the neighboring subunit is also apparently involved in lining the hydrophobic binding pocket for the drug. This pocket, which is formed at the interface of two adjacent subunits, may be present only in the open state of the channel, consistent with the idea that retigabine stabilizes an open-channel conformation.
引用
收藏
页码:272 / 280
页数:9
相关论文
共 35 条
[1]   A potassium channel mutation in neonatal human epilepsy [J].
Biervert, C ;
Schroeder, BC ;
Kubisch, C ;
Berkovic, SF ;
Propping, P ;
Jentsch, TJ ;
Steinlein, OK .
SCIENCE, 1998, 279 (5349) :403-406
[2]   MUSCARINIC SUPPRESSION OF A NOVEL VOLTAGE-SENSITIVE K+ CURRENT IN A VERTEBRATE NEURON [J].
BROWN, DA ;
ADAMS, PR .
NATURE, 1980, 283 (5748) :673-676
[3]   A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family [J].
Charlier, C ;
Singh, NA ;
Ryan, SG ;
Lewis, TB ;
Reus, BE ;
Leach, RJ ;
Leppert, M .
NATURE GENETICS, 1998, 18 (01) :53-55
[4]   KCNQ1 gain-of-function mutation in familial atrial fibrillation [J].
Chen, YH ;
Xu, SJ ;
Bendahhou, S ;
Wang, XL ;
Wang, Y ;
Xu, WY ;
Jin, HW ;
Sun, H ;
Su, XY ;
Zhuang, QN ;
Yang, YQ ;
Li, YB ;
Liu, Y ;
Xu, HJ ;
Li, XF ;
Ma, N ;
Mou, CP ;
Chen, Z ;
Barhanin, J ;
Huang, W .
SCIENCE, 2003, 299 (5604) :251-254
[5]   Colocalization and coassembly of two human brain M-type potassium channel subunits that are mutated in epilepsy [J].
Cooper, EC ;
Aldape, KD ;
Abosch, A ;
Barbaro, NM ;
Berger, MS ;
Peacock, WS ;
Jan, YN ;
Jan, LY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (09) :4914-4919
[6]   KCNQ2 is a nodal K+ channel [J].
Devaux, JJ ;
Kleopa, KA ;
Cooper, EC ;
Scherer, SS .
JOURNAL OF NEUROSCIENCE, 2004, 24 (05) :1236-1244
[7]  
Hadley JK, 2003, J NEUROSCI, V23, P5012
[8]   Neuronal KCNQ potassium channels: Physiology and role in disease [J].
Jentsch, TJ .
NATURE REVIEWS NEUROSCIENCE, 2000, 1 (01) :21-30
[9]   KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness [J].
Kubisch, C ;
Schroeder, BC ;
Friedrich, T ;
Lütjohann, B ;
El-Amraoui, A ;
Marlin, S ;
Petit, C ;
Jentsch, TJ .
CELL, 1999, 96 (03) :437-446
[10]   Crystal structure of a mammalian voltage-dependent Shaker family K+ channel [J].
Long, SB ;
Campbell, EB ;
MacKinnon, R .
SCIENCE, 2005, 309 (5736) :897-903