Molecular cloning and expression of fungal cellobiose transporters and β-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae

被引:29
作者
Bae, Yi-Hyun [1 ,2 ,3 ]
Kang, Kyeong-Hyeon [1 ,2 ]
Jin, Yong-Su [4 ]
Seo, Jin-Ho [1 ,2 ,3 ]
机构
[1] Seoul Natl Univ, Dept Agr Biotechnol, Seoul 151742, South Korea
[2] Seoul Natl Univ, Ctr Food & Bioconvergence, Seoul 151742, South Korea
[3] Seoul Natl Univ, Interdisciplinary Program Bioengn, Seoul 151742, South Korea
[4] Univ Illinois, Dept Food Sci & Human Nutr, Urbana, IL 61801 USA
关键词
Cellobiose fermentation; Cellodextrin transporter; beta-glucosidase; Ethanol; Saccharomyces cerevisiae; XYLOSE REDUCTASE; CELLULASE; STRAIN; YEAST;
D O I
10.1016/j.jbiotec.2013.10.030
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Cellobiose was once regarded as a byproduct that should be removed from biomass hydrolysates because of its inhibitory activity to cellulases. It was revealed, however, that cellobiose could serve as a co-substrate for xylose fermentation by engineered Saccharomyces cerevisiae. Despite its advantages, to date, little is known about cellodextrin transporters that endow S. cerevisiae with cellobiose transporting ability. In this study, engineered S. cerevisiae strains capable of fermenting cellobiose were constructed by expressing various fungal cellobiose transporters and intracellular beta-glucosidases. Among them, the strain expressing a putative sugar transporter from Penicillium chrysogenum (Pc_ST) and beta-glucosidase from Thielavia terrestris (Tt_BG) showed an improved cellobiose fermentation performance compared to the strain expressing a cellodextrin transporter from Neurospora crassa (Nc_CDT-1) and beta-glucosidase from N. crassa (Nc_GH1-1). Cellobiose fermentation by S. cerevisiae Pc_ST/Tt_BG under microaerobic conditions resulted in 14.5 +/- 0.5 g/L of final ethanol concentration with a yield of 0.37 +/- 0.01 g ethanol/g cellobiose, which are 22% and 26% higher than the corresponding values of S. cerevisiae Nc_CDT-1/Nc_GH1-1. These results suggest that the yield and rate of cellobiose fermentation can be improved by adopting optimal pairs of cellobiose transporters and p-glucosidase. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:34 / 41
页数:8
相关论文
共 21 条
[1]   Genetic variation: molecular mechanisms and impact on microbial evolution [J].
Arber, W .
FEMS MICROBIOLOGY REVIEWS, 2000, 24 (01) :1-7
[2]   Dynamic metabolomics differentiates between carbon and energy starvation in recombinant Saccharomyces cerevisiae fermenting xylose [J].
Bergdahl, Basti ;
Heer, Dominik ;
Sauer, Uwe ;
Hahn-Hagerdal, Barbel ;
van Niel, Ed W. J. .
BIOTECHNOLOGY FOR BIOFUELS, 2012, 5
[3]   Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris [J].
Berka, Randy M. ;
Grigoriev, Igor V. ;
Otillar, Robert ;
Salamov, Asaf ;
Grimwood, Jane ;
Reid, Ian ;
Ishmael, Nadeeza ;
John, Tricia ;
Darmond, Corinne ;
Moisan, Marie-Claude ;
Henrissat, Bernard ;
Coutinho, Pedro M. ;
Lombard, Vincent ;
Natvig, Donald O. ;
Lindquist, Erika ;
Schmutz, Jeremy ;
Lucas, Susan ;
Harris, Paul ;
Powlowski, Justin ;
Bellemare, Annie ;
Taylor, David ;
Butler, Gregory ;
de Vries, Ronald P. ;
Allijn, Iris E. ;
van den Brink, Joost ;
Ushinsky, Sophia ;
Storms, Reginald ;
Powell, Amy J. ;
Paulsen, Ian T. ;
Elbourne, Liam D. H. ;
Baker, Scott E. ;
Magnuson, Jon ;
LaBoissiere, Sylvie ;
Clutterbuck, A. John ;
Martinez, Diego ;
Wogulis, Mark ;
de Leon, Alfredo Lopez ;
Rey, Michael W. ;
Tsang, Adrian .
NATURE BIOTECHNOLOGY, 2011, 29 (10) :922-U222
[4]  
Bhat K.M., 1988, METHOD ENZYMOL, V160, P87
[5]   Cellulase, clostridia, and ethanol [J].
Demain, AL ;
Newcomb, M ;
Wu, JHD .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2005, 69 (01) :124-+
[6]   Cellodextrin Transport in Yeast for Improved Biofuel Production [J].
Galazka, Jonathan M. ;
Tian, Chaoguang ;
Beeson, William T. ;
Martinez, Bruno ;
Glass, N. Louise ;
Cate, Jamie H. D. .
SCIENCE, 2010, 330 (6000) :84-86
[7]   Single Amino Acid Substitutions in HXT2.4 from Scheffersomyces stipitis Lead to Improved Cellobiose Fermentation by Engineered Saccharomyces cerevisiae [J].
Ha, Suk-Jin ;
Kim, Heejin ;
Lin, Yuping ;
Jang, Myoung-Uoon ;
Galazka, Jonathan M. ;
Kim, Tae-Jip ;
Cate, Jamie H. D. ;
Jin, Yong-Su .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2013, 79 (05) :1500-1507
[8]   Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters [J].
Ha, Suk-Jin ;
Galazka, Jonathan M. ;
Oh, Eun Joong ;
Kordic, Vesna ;
Kim, Heejin ;
Jin, Yong-Su ;
Cate, Jamie H. D. .
METABOLIC ENGINEERING, 2013, 15 :134-143
[9]   Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation [J].
Ha, Suk-Jin ;
Galazka, Jonathan M. ;
Kim, Soo Rin ;
Choi, Jin-Ho ;
Yang, Xiaomin ;
Seo, Jin-Ho ;
Glass, N. Louise ;
Cate, Jamie H. D. ;
Jin, Yong-Su .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (02) :504-509
[10]   INHIBITION OF TRICHODERMA-REESEI CELLULASE BY SUGARS AND SOLVENTS [J].
HOLTZAPPLE, M ;
COGNATA, M ;
SHU, Y ;
HENDRICKSON, C .
BIOTECHNOLOGY AND BIOENGINEERING, 1990, 36 (03) :275-287