Channel Dimensional Error Effect of Stamped Bipolar Plates on the Characteristics of Gas Diffusion Layer Contact Pressure for Proton Exchange Membrane Fuel Cell Stacks

被引:21
|
作者
Qiu, Diankai [1 ]
Yi, Peiyun [1 ]
Peng, Linfa [1 ]
Lai, Xinmin [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Shanghai Key Lab Digital Manufacture Thin Walled, Shanghai 200240, Peoples R China
来源
JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY | 2015年 / 12卷 / 04期
基金
中国国家自然科学基金;
关键词
proton exchange membrane (PEM) fuel cell; metallic bipolar plates; channel dimensional error; contact pressure distribution; pressure change; COMPRESSION; RESISTANCE; PERFORMANCE; STRESS; MODEL; GDL;
D O I
10.1115/1.4030513
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Thin metallic bipolar plates (BPPs) fabricated by stamping technology are regarded as promising alternatives to traditional graphite BPPs in proton exchange membrane (PEM) fuel cell. However, during the stamping process, dimensional error in terms of the variation in channel height is inevitable, which results in performance loss for PEM fuel cell stack. The objective of this study is to investigate the effect of dimensional error on gas diffusion layer (GDL) pressure characteristics in the multicell stacks. At first, parameterized finite element (FE) model of metallic BPP/GDL assembly is established, and the height of channels is considered as varying parameters of linear distribution according to measurements of actual BPPs. Evaluation methods of GDL contact pressure are developed by considering the pressure distribution in the in-plane and through-plane directions. Then, simulation of the assembly process for a series of multicell stacks is performed to explore the relation between dimensional error and contact pressure based on the evaluation methods. Influences of channel number, cell number, and clamping force on the constitutive relation are discussed. At last, experiments are conducted and pressure sensitive films are used to obtain the actual GDL contact pressure. The numerical results show the same trend as experimental results. This study illustrates that contact pressure of each cell layer is in severely uneven distribution for the in-plane direction, and pressure change is unavoidable for the through-plane direction in the multicell stack, especially for the first several cells close to the endplate. The methodology developed is beneficial to the understanding of the dimensional error effect, and it can also be applied to guide the assembling of PEM fuel cell stack.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Experimental and computational study of the microporous layer and hydrophobic treatment in the gas diffusion layer of a proton exchange membrane fuel cell
    Sarker, Mrittunjoy
    Rahman, Md Azimur
    Mojica, Felipe
    Mehrazi, Shirin
    Kort-Kamp, Wilton J. M.
    Chuang, Po-Ya Abel
    JOURNAL OF POWER SOURCES, 2021, 509
  • [42] Bulk and contact resistances of gas diffusion layers in proton exchange membrane fuel cells
    Ye, Donghao
    Gauthier, Eric
    Benziger, Jay B.
    Pan, Mu
    JOURNAL OF POWER SOURCES, 2014, 256 : 449 - 456
  • [43] Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells: A Review
    Guo, Hui
    Chen, Lubing
    Ismail, Sara Adeeba
    Jiang, Lulu
    Guo, Shihang
    Gu, Jie
    Zhang, Xiaorong
    Li, Yifeng
    Zhu, Yuwen
    Zhang, Zihan
    Han, Donglin
    MATERIALS, 2022, 15 (24)
  • [44] Study on hydrophobicity degradation of gas diffusion layer in proton exchange membrane fuel cells
    Yu, Shuchun
    Li, Xiaojin
    Li, Jin
    Liu, Sa
    Lu, Wangting
    Shao, Zhigang
    Yi, Baolian
    ENERGY CONVERSION AND MANAGEMENT, 2013, 76 : 301 - 306
  • [45] Three-dimensional optimisation of a fuel gas channel of a proton exchange membrane fuel cell for maximum current density
    Obayopo, Surajudeen Olanrewaju
    Bello-Ochende, Tunde
    Meyer, Josua Petrus
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2013, 37 (03) : 228 - 241
  • [46] Uneven gas diffusion layer intrusion in gas channel arrays of proton exchange membrane fuel cell and its effects on flow distribution
    Kandlikar, S. G.
    Lu, Z.
    Lin, T. Y.
    Cooke, D.
    Daino, M.
    JOURNAL OF POWER SOURCES, 2009, 194 (01) : 328 - 337
  • [47] Modification and durability of carbon paper gas diffusion layer in proton exchange membrane fuel cell
    Zhang, Wenjiao
    Wang, Yanli
    CERAMICS INTERNATIONAL, 2023, 49 (06) : 9371 - 9381
  • [48] Structural design of gas diffusion layer for proton exchange membrane fuel cell at varying humidification
    Chen, Liang
    Lin, Rui
    Tang, Shenghao
    Zhong, Di
    Hao, Zhixian
    JOURNAL OF POWER SOURCES, 2020, 467
  • [49] Study on transmission coefficients anisotropy of gas diffusion layer in a proton exchange membrane fuel cell
    Yu, Rui Jiao
    Guo, Hang
    Ye, Fang
    ELECTROCHIMICA ACTA, 2022, 414
  • [50] New approach by electrospray technique to prepare a gas diffusion layer for the proton exchange membrane fuel cell anode
    Silva, L. M. G.
    Leocadio, G. N.
    de Souza, R. F. B.
    Mierzwa, J. C.
    Duong, A.
    Venancio, E. C.
    Neto, A. O.
    MATERIALS TODAY ADVANCES, 2021, 12