Detecting Ultrasound Vibrations with Graphene Resonators

被引:48
作者
Verbiest, Gerard J. [1 ,2 ]
Kirchhof, Jan N. [1 ,2 ,3 ]
Sonntag, Jens [1 ,2 ,4 ]
Goldsche, Matthias [1 ,2 ,4 ]
Khodkov, Tymofiy [1 ,2 ,4 ]
Stampfer, Christoph [1 ,2 ,4 ]
机构
[1] Rhein Westfal TH Aachen, JARA FIT, D-52056 Aachen, Germany
[2] Rhein Westfal TH Aachen, Inst Phys 2, D-52056 Aachen, Germany
[3] Free Univ Berlin, Dept Phys, D-14195 Berlin, Germany
[4] Forschungszentrum Julich, Peter Grunberg Inst PGI 9, D-52425 Julich, Germany
基金
欧洲研究理事会;
关键词
Graphene; ultrasound detection; NEMS; resonator; scanning probe microscopy; ATOMIC-FORCE MICROSCOPY; MECHANICAL RESONATORS; CANTILEVERS; MICROPHONE; TRANSPORT; CONTACT;
D O I
10.1021/acs.nanolett.8b02036
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ultrasound detection is one of the most-important nondestructive subsurface characterization tools for materials, the goal of which is to laterally resolve the subsurface structure with nanometer or even atomic resolution. In recent years, graphene resonators have attracted attention for their use in loudspeakers and ultrasound radios, showing their potential for realizing communication systems with air-carried ultrasound. Here, we show a graphene resonator that detects ultrasound vibrations propagating through the substrate on which it was fabricated. We ultimately achieve a resolution of similar to 7 pm/root Hz in ultrasound amplitude at frequencies up to 100 MHz. Thanks to an extremely high nonlinearity in the mechanical restoring force, the resonance frequency itself can also be used for ultrasound detection. We observe a shift of 120 kHz at a resonance frequency of 65 MHz for an induced vibration amplitude of 100 pm with a resolution of 25 pm. Remarkably, the nonlinearity also explains the generally observed asymmetry in the resonance frequency tuning of the resonator when it is pulled upon with an electrostatic gate. This work puts forward a sensor design that fits onto an atomic force microscope cantilever and therefore promises direct ultrasound detection at the nanoscale for nondestructive subsurface characterization.
引用
收藏
页码:5132 / 5137
页数:6
相关论文
共 48 条
[1]  
Albrecht W., 2017, J LARGE SCALE RES FA, V3, P1
[2]  
[Anonymous], 2014, Diagnostic Ultrasound Imaging
[3]   Ballistic Transport Exceeding 28 μm in CVD Grown Graphene [J].
Banszerus, Luca ;
Schmitz, Michael ;
Engels, Stephan ;
Goldsche, Matthias ;
Watanabe, Kenji ;
Taniguch, Takashi ;
Beschoten, Bernd ;
Stampfer, Christoph .
NANO LETTERS, 2016, 16 (02) :1387-1391
[4]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[5]   Physical mechanisms of megahertz vibrations and nonlinear detection in ultrasonic force and related microscopies [J].
Bosse, J. L. ;
Tovee, P. D. ;
Huey, B. D. ;
Kolosov, O. V. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (14)
[6]   Nanoscale subsurface imaging via resonant difference-frequency atomic force ultrasonic microscopy [J].
Cantrell, Sean A. ;
Cantrell, John H. ;
Lillehei, Peter T. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (11)
[7]  
Castellini P., 2009, An Introduction to Optoelectronic Sensors, P216
[8]  
Chaste J, 2012, NAT NANOTECHNOL, V7, P300, DOI [10.1038/NNANO.2012.42, 10.1038/nnano.2012.42]
[9]  
Chen 32J., 2007, Introduction to scanning tunneling microscopy, V2nd edn
[10]  
Chen CY, 2013, NAT NANOTECHNOL, V8, P923, DOI [10.1038/NNANO.2013.232, 10.1038/nnano.2013.232]