Numerical simulation of Faraday waves

被引:72
|
作者
Perinet, Nicolas [1 ,2 ]
Juric, Damir [3 ]
Tuckerman, Laurette S. [1 ,2 ]
机构
[1] Univ Paris 06, Phys & Mecan Milieux Heterogenes Lab, Ecole Super Phys & Chim Ind Ville Paris, CNRS,UMR 7636, F-75231 Paris 5, France
[2] Univ Paris 07, Phys & Mecan Milieux Heterogenes Lab, Ecole Super Phys & Chim Ind Ville Paris, CNRS,UMR 7636, F-75231 Paris 5, France
[3] CNRS, LIMSI, UPR 3251, F-91403 Orsay, France
基金
英国科学技术设施理事会; 美国国家科学基金会; 欧盟地平线“2020”; 加拿大自然科学与工程研究理事会; 加拿大创新基金会; 欧洲研究理事会; 澳大利亚研究理事会; 奥地利科学基金会; 巴西圣保罗研究基金会; 以色列科学基金会; 日本学术振兴会; 中国国家自然科学基金;
关键词
LARGE ASPECT RATIO; SURFACE-WAVES; PATTERN-FORMATION; VISCOUS FLUIDS; INSTABILITY; FLOWS; INTERFACE; SCHEMES; STATES; DEPTH;
D O I
10.1017/S0022112009007551
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We simulate numerically the full dynamics of Faraday waves in three dimensions for two incompressible and immiscible viscous fluids. The Navier-Stokes equations are solved using a finite-difference projection method coupled with a front-tracking method for the interface between the two fluids. The critical accelerations and wavenumbers, as well as the temporal behaviour at onset are compared with the results of the linear Floquet analysis of Kumar & Tuckerman (J. Fluid Mech., vol. 279, 1994, p. 49). The finite-amplitude results are compared with the experiments of Kityk et al. (Phys. Rev. E, vol. 72, 2005, p. 036209). In particular, we reproduce the detailed spatio-temporal spectrum of both square and hexagonal patterns within experimental uncertainty. We present the first calculations of a three-dimensional velocity field arising from the Faraday instability for a hexagonal pattern as it varies over its oscillation period.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 50 条
  • [1] Numerical simulation of supersquare patterns in Faraday waves
    Kahouadji, L.
    Perinet, N.
    Tuckerman, L. S.
    Shin, S.
    Chergui, J.
    Juric, D.
    JOURNAL OF FLUID MECHANICS, 2015, 772 : R2.1 - R2.12
  • [2] Comparison of Different Numerical Interface Capturing Methods for the Simulation of Faraday Waves
    Blanco, Armando
    Oliva, Richard
    Machado, Daniel
    Legendre, Dominique
    PROCESSES, 2021, 9 (06)
  • [3] Faraday instability on a sphere: numerical simulation
    Ebo-Adou, A.
    Tuckerman, L. S.
    Shin, S.
    Chergui, J.
    Juric, D.
    JOURNAL OF FLUID MECHANICS, 2019, 870 : 433 - 459
  • [4] Numerical simulation of Faraday waves oscillated by two-frequency forcing
    Takagi, Kentaro
    Matsumoto, Takeshi
    PHYSICS OF FLUIDS, 2015, 27 (03)
  • [5] Numerical simulation of interfacial resonant Faraday waves between two immiscible liquids
    Liu, Dongming
    Jiang, Xinyan
    Lin, Pengzhi
    PHYSICS OF FLUIDS, 2024, 36 (02)
  • [6] Streaming patterns in Faraday waves
    Perinet, Nicolas
    Gutierrez, Pablo
    Urra, Hector
    Mujica, Nicolas
    Gordillo, Leonardo
    JOURNAL OF FLUID MECHANICS, 2017, 819 : 285 - 310
  • [7] Numerical simulation of two-dimensional Faraday waves with phase-field modelling
    Takagi, Kentaro
    Matsumoto, Takeshi
    JOURNAL OF FLUID MECHANICS, 2011, 686 : 409 - 425
  • [8] Hysteretic Faraday waves
    Perinet, Nicolas
    Falcon, Claudio
    Chergui, Jalel
    Juric, Damir
    Shin, Seungwon
    PHYSICAL REVIEW E, 2016, 93 (06)
  • [9] Inviscid Faraday waves in a brimful circular cylinder
    Kidambi, R.
    JOURNAL OF FLUID MECHANICS, 2013, 724 : 671 - 694
  • [10] Information stored in Faraday waves: the origin of a path memory
    Eddi, Antonin
    Sultan, Eric
    Moukhtar, Julien
    Fort, Emmanuel
    Rossi, Maurice
    Couder, Yves
    JOURNAL OF FLUID MECHANICS, 2011, 674 : 433 - 463