Local interpolation schemes for landmark-based image registration: A comparison

被引:11
作者
Allasia, Giampietro [1 ]
Cavoretto, Roberto [1 ]
De Rossi, Alessandra [1 ]
机构
[1] Univ Turin, Dept Math G Peano, I-10123 Turin, Italy
关键词
Nonrigid image registration; Scattered data interpolation; Modified Shepard's formula; Wendland's functions; Lobachevslcy splines; RADIAL BASIS FUNCTIONS; SPLINE FUNCTIONS; TRANSFORMATIONS;
D O I
10.1016/j.matcom.2014.06.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we focus, from a mathematical point of view, on properties and performances of some local interpolation schemes for landmark-based image registration. Precisely, we consider modified Shepard's interpolants, Wendland's functions, and Lobachevsky splines. They are quite unlike each other, but all of them are compactly supported and enjoy interesting theoretical and computational properties. In particular, we point out some unusual forms of the considered functions. Finally, detailed numerical comparisons are given, considering also Gaussians and thin plate splines, which are really globally supported but widely used in applications. (C) 2014 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 47 条
[1]   A class of spline functions for landmark-based image registration [J].
Allasia, G. ;
Cavoretto, R. ;
De Rossi, A. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (08) :923-934
[2]   Scattered and track data interpolation using an efficient strip searching procedure [J].
Allasia, G. ;
Besenghi, R. ;
Cavoretto, R. ;
De Rossi, A. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) :5949-5966
[3]  
Allasia G, 2014, APPL MATH INFORM SCI, V8, P145
[4]   Numerical integration on multivariate scattered data by Lobachevsky splines [J].
Allasia, Giampietro ;
Cavoretto, Roberto ;
De Rossi, Alessandra .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (09) :2003-2018
[5]   Lobachevsky spline functions and interpolation to scattered data [J].
Allasia, Giampietro ;
Cavoretto, Roberto ;
De Rossi, Alessandra .
COMPUTATIONAL & APPLIED MATHEMATICS, 2013, 32 (01) :71-87
[6]   Radial Basis Functions and Splines for Landmark-Based Registration of Medical Images [J].
Allasia, Giampietro ;
Cavoretto, Roberto ;
De Rossi, Alessandra ;
Quatember, Bernhard ;
Recheis, Wolfgang ;
Mayr, Martin ;
Demertzis, Stefanos .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 :716-+
[7]  
[Anonymous], THESIS U TURIN
[8]  
[Anonymous], 1966, CALCUL PROBABILITES
[9]  
[Anonymous], 2003, CAMBRIDGE MONOGR APP
[10]  
[Anonymous], 2000, HDB MED IMAGING, DOI DOI 10.1117/3.831079.CH8