Local interpolation schemes for landmark-based image registration: A comparison

被引:10
作者
Allasia, Giampietro [1 ]
Cavoretto, Roberto [1 ]
De Rossi, Alessandra [1 ]
机构
[1] Univ Turin, Dept Math G Peano, I-10123 Turin, Italy
关键词
Nonrigid image registration; Scattered data interpolation; Modified Shepard's formula; Wendland's functions; Lobachevslcy splines; RADIAL BASIS FUNCTIONS; SPLINE FUNCTIONS; TRANSFORMATIONS;
D O I
10.1016/j.matcom.2014.06.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we focus, from a mathematical point of view, on properties and performances of some local interpolation schemes for landmark-based image registration. Precisely, we consider modified Shepard's interpolants, Wendland's functions, and Lobachevsky splines. They are quite unlike each other, but all of them are compactly supported and enjoy interesting theoretical and computational properties. In particular, we point out some unusual forms of the considered functions. Finally, detailed numerical comparisons are given, considering also Gaussians and thin plate splines, which are really globally supported but widely used in applications. (C) 2014 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 47 条
  • [1] A class of spline functions for landmark-based image registration
    Allasia, G.
    Cavoretto, R.
    De Rossi, A.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (08) : 923 - 934
  • [2] Scattered and track data interpolation using an efficient strip searching procedure
    Allasia, G.
    Besenghi, R.
    Cavoretto, R.
    De Rossi, A.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) : 5949 - 5966
  • [3] Allasia G, 2014, APPL MATH INFORM SCI, V8, P145
  • [4] Numerical integration on multivariate scattered data by Lobachevsky splines
    Allasia, Giampietro
    Cavoretto, Roberto
    De Rossi, Alessandra
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (09) : 2003 - 2018
  • [5] Lobachevsky spline functions and interpolation to scattered data
    Allasia, Giampietro
    Cavoretto, Roberto
    De Rossi, Alessandra
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2013, 32 (01) : 71 - 87
  • [6] Radial Basis Functions and Splines for Landmark-Based Registration of Medical Images
    Allasia, Giampietro
    Cavoretto, Roberto
    De Rossi, Alessandra
    Quatember, Bernhard
    Recheis, Wolfgang
    Mayr, Martin
    Demertzis, Stefanos
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 716 - +
  • [7] [Anonymous], THESIS U TURIN
  • [8] [Anonymous], 1966, CALCUL PROBABILITES
  • [9] [Anonymous], 2003, CAMBRIDGE MONOGR APP
  • [10] [Anonymous], 2000, HDB MED IMAGING, DOI DOI 10.1117/3.831079.CH8