New vaccine production platforms used in developing SARS-CoV-2 vaccine candidates

被引:59
作者
Ura, Takehiro [1 ]
Yamashita, Akio [2 ]
Mizuki, Nobuhisa [1 ]
Okuda, Kenji [3 ,4 ,5 ]
Shimada, Masaru [3 ]
机构
[1] Yokohama City Univ, Grad Sch Med, Dept Ophthalmol & Visual Sci, Yokohama, Kanagawa 2360004, Japan
[2] Grad Sch Med, Dept Mol Biol, Yokohama, Kanagawa 2360004, Japan
[3] Yokohama City Univ, Grad Sch Med, Dept Mol Biodef Res, Yokohama, Kanagawa 2360004, Japan
[4] Okuda Vaccine Res Inst, Yokohama, Kanagawa 2350045, Japan
[5] Yokohama City Univ, Yokohama, Kanagawa 2360004, Japan
关键词
SARS-CoV-2; Vaccine; Vector; ANTIBODY-DEPENDENT ENHANCEMENT; VESICULAR STOMATITIS VIRUSES; ADENOVIRUS TYPE 5; IMMUNE-RESPONSES; FUSION PROTEIN; SPIKE PROTEIN; MVA VECTORS; CORONAVIRUS; DNA; INFECTION;
D O I
10.1016/j.vaccine.2020.11.054
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The threat of the current coronavirus disease pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is accelerating the development of potential vaccines. Candidate vaccines have been generated using existing technologies that have been applied for developing vaccines against other infectious diseases. Two new types of platforms, mRNA- and viral vector-based vaccines, have been gaining attention owing to the rapid advancement in their methodologies. In clinical trials, setting appropriate immunological endpoints plays a key role in evaluating the efficacy and safety of candidate vaccines. Updated information about immunological features from individuals who have or have not been exposed to SARS-CoV-2 continues to guide effective vaccine development strategies. This review highlights key strategies for generating candidate SARS-CoV-2 vaccines and considerations for vaccine development and clinical trials. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:197 / 201
页数:5
相关论文
共 83 条
[1]   mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials [J].
A Feldman, Robert ;
Fuhr, Rainard ;
Smolenov, Igor ;
Ribeiro, Amilcar ;
Panther, Lori ;
Watson, Mike ;
Senn, Joseph J. ;
Smith, Mike ;
Almarsson, Orn ;
Pujar, Hari S. ;
Laska, Michael E. ;
Thompson, James ;
Zaks, Tal ;
Ciaramella, Giuseppe .
VACCINE, 2019, 37 (25) :3326-3334
[2]   Adenovirus type 5 with modified hexons induces robust transgene-specific immune responses in mice with pre-existing immunity against adenovirus type 5 [J].
Abe, Shinya ;
Okuda, Kenji ;
Ura, Takehiro ;
Kondo, Asami ;
Yoshida, Atsushi ;
Yoshizaki, Shinji ;
Mizuguchi, Hiroyuki ;
Klinman, Dennis ;
Shimada, Masaru .
JOURNAL OF GENE MEDICINE, 2009, 11 (07) :570-579
[3]  
Alouane T, BIORXIV
[4]   Long-term efficacy and safety of mRNA therapy in two murine models of methylmalonic acidemia [J].
An, Ding ;
Frassetto, Andrea ;
Jacquinet, Eric ;
Eybye, Marianne ;
Milano, Joseph ;
DeAntonis, Christine ;
Vi Nguyen ;
Laureano, Rodrigo ;
Milton, Jaclyn ;
Sabnis, Staci ;
Lukacs, Christine M. ;
Guey, Lin T. .
EBIOMEDICINE, 2019, 45 :519-528
[5]   Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults [J].
Anderson, E. J. ;
Rouphael, N. G. ;
Widge, A. T. ;
Jackson, L. A. ;
Roberts, P. C. ;
Makhene, M. ;
Chappell, J. D. ;
Denison, M. R. ;
Stevens, L. J. ;
Pruijssers, A. J. ;
McDermott, A. B. ;
Flach, B. ;
Lin, B. C. ;
Doria-Rose, N. A. ;
O'Dell, S. ;
Schmidt, S. D. ;
Corbett, K. S. ;
Swanson, P. A., II ;
Padilla, M. ;
Neuzil, K. M. ;
Bennett, H. ;
Leav, B. ;
Makowski, M. ;
Albert, J. ;
Cross, K. ;
Edara, V. V. ;
Floyd, K. ;
Suthar, M. S. ;
Martinez, D. R. ;
Baric, R. ;
Buchanan, W. ;
Luke, C. J. ;
Phadke, V. K. ;
Rostad, C. A. ;
Ledgerwood, J. E. ;
Graham, B. S. ;
Beigel, J. H. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 383 (25) :2427-2438
[6]  
Barberis I, 2016, J Prev Med Hyg, V57, pE115
[7]   Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity [J].
Bardina, Susana V. ;
Bunduc, Paul ;
Tripathi, Shashank ;
Duehr, James ;
Frere, Justin J. ;
Brown, Julia A. ;
Nachbagauer, Raffael ;
Foster, Gregory A. ;
Krysztof, David ;
Tortorella, Domenico ;
Stramer, Susan L. ;
Garcia-Sastre, Adolfo ;
Krammer, Florian ;
Lim, Jean K. .
SCIENCE, 2017, 356 (6334) :175-180
[8]   Mechanisms of Coronavirus Cell Entry Mediated by the Viral Spike Protein [J].
Belouzard, Sandrine ;
Millet, Jean K. ;
Licitra, Beth N. ;
Whittaker, Gary R. .
VIRUSES-BASEL, 2012, 4 (06) :1011-1033
[9]   The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex [J].
Bosch, BJ ;
van der Zee, R ;
de Haan, CAM ;
Rottier, PJM .
JOURNAL OF VIROLOGY, 2003, 77 (16) :8801-8811
[10]   Clq binding to liposomes is surface charge dependent and is inhibited by peptides consisting of residues 14-26 of the human ClqA chain in a sequence independent manner [J].
Bradley, AJ ;
Brooks, DE ;
Norris-Jones, R ;
Devine, DV .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1999, 1418 (01) :19-30