The closure properties on real numbers under limits and computable operators

被引:2
作者
Zheng, XZ [1 ]
机构
[1] Brandenburg Tech Univ Cottbus, Theoret Informat, D-03044 Cottbus, Germany
关键词
weakly computable reals; computable real functions; closure properties;
D O I
10.1016/S0304-3975(01)00107-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In effective analysis, various classes of real numbers are discussed. For example, the classes of computable, semi-computable, weakly computable, recursively approximable real numbers, etc. All these classes correspond to some kind of (weak) computability of the real numbers. In this paper we discuss mathematical closure properties of these classes under the limit, effective limit and computable function. Among others, we show that the class of weakly computable real numbers is not closed under effective limit and partial computable functions while the class of recursively approximable real numbers is closed under effective limit and partial computable functions. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:499 / 518
页数:20
相关论文
共 21 条
[1]   Weakly computable real numbers [J].
Ambos-Spies, K ;
Weihrauch, K ;
Zheng, XZ .
JOURNAL OF COMPLEXITY, 2000, 16 (04) :676-690
[2]  
CALUDE C, 1999, CDMTCS RES REPORT SE, V95
[3]  
Calude CS, 1998, LECT NOTES COMPUT SC, V1373, P596
[4]  
CEITIN GS, 1971, ZAP NAUCN SEM LENING, V20, P290
[5]  
CEITIN GS, 1971, ZAP NAUCN SEM LENING, V20, P263
[6]   THEORY OF PROGRAM SIZE FORMALLY IDENTICAL TO INFORMATION-THEORY [J].
CHAITIN, GJ .
JOURNAL OF THE ACM, 1975, 22 (03) :329-340
[7]  
Grzegorczyk A., 1957, FUND MATH, V44, P61, DOI [10.4064/fm-44-1-61-71, DOI 10.4064/FM-44-1-61-71]
[8]  
Ko K.-I., 1991, Complexity Theory of Real Functions
[9]   REDUCIBILITIES ON REAL NUMBERS [J].
KO, KI .
THEORETICAL COMPUTER SCIENCE, 1984, 31 (1-2) :101-123
[10]  
Pour-El M.B., 1989, Perspectives in Mathematical Logic