Dual-layer graphene based tunable broadband terahertz absorber relying on the coexistence of hybridization and stacking effects

被引:12
作者
Lin, Rong [1 ]
He, Xiaoliang [1 ]
Jiang, Zhilong [1 ]
Liu, Cheng [1 ,3 ]
Wang, Shouyu [1 ,2 ]
Kong, Yan [1 ]
机构
[1] Jiangnan Univ, Sch Sci, Wuxi 214122, Jiangsu, Peoples R China
[2] Nanjing Agr Univ, Single Mol Nanometry Lab Sinmolab, Nanjing 210095, Jiangsu, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China
关键词
tunable broadband THz absorber; dual-layer graphene; hybridization and stacking effects; incident angle and polarization insensitive; METAMATERIAL ABSORBER; PERFECT ABSORBER; ABSORPTION; METAL; MODULATION; STEALTH; DESIGN; THIN;
D O I
10.1088/1361-6463/abd7bb
中图分类号
O59 [应用物理学];
学科分类号
摘要
With the fast development of terahertz (THz) techniques, THz absorbers have a variety of applications. However, current designs have a series of shortcomings, such as low absorption rate and a fixed and narrow absorption bandwidth. To solve such problems, in this paper, we design a tunable broadband THz absorber, which consists of two layers of graphene structures: the top layer is arrayed with the graphene concentric hexagonal rings and the bottom layer is arrayed with regular graphene hexagon rings; therefore, both layers support hybridization and stacking effects. The coexistence of both effects achieves the absorption rate of over 90% in a broad band from 0.93 THz to 1.80 THz. Moreover, the absorption spectrum can be tuned by adjusting the graphene chemical potential, which is insensitive to both incident angle and polarization. Considering advantages such as a tunable broad absorption band, a high absorption rate and insensitive incident angle and polarization, the proposed dual-layer graphene based tunable broadband THz absorber can be a useful reference for absorber design even in other electromagnetic wavebands.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Dual-regulated broadband terahertz absorber based on vanadium dioxide and graphene
    Zhang, Chunyu
    Zhang, Heng
    Ling, Fang
    Zhang, Bin
    APPLIED OPTICS, 2021, 60 (16) : 4835 - 4840
  • [22] Tunable Dual Broadband Terahertz Metamaterial Absorber Based on Vanadium Dioxide
    Jiao, Xiao-Fei
    Zhang, Zi-Heng
    Li, Tong
    Xu, Yun
    Song, Guo-Feng
    APPLIED SCIENCES-BASEL, 2020, 10 (20): : 1 - 9
  • [23] Development of a tunable broadband metamaterial absorber based on joint modulation of graphene and photosensitive silicon in the terahertz region
    Li, You
    Wang, Xuan
    Zhang, Ying
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2023, 164
  • [24] Research on dual-controlled terahertz metamaterial broadband absorber based on vanadium dioxide and graphene
    Zhao, Jingyun
    Yang, Hong
    Shan, Xinyu
    Mi, Xianwu
    Ma, Shilin
    Huang, Yonggang
    OPTICS COMMUNICATIONS, 2023, 545
  • [25] Dual-Tunable Broadband Terahertz Absorber Based on a Hybrid Graphene-Dirac Semimetal Structure
    Wu, Jiali
    Yuan, Xueguang
    Zhang, Yangan
    Yan, Xin
    Zhang, Xia
    MICROMACHINES, 2020, 11 (12) : 1 - 11
  • [26] Switchable and Dual-Tunable Multilayered Terahertz Absorber Based on Patterned Graphene and Vanadium Dioxide
    Liu, Hongyao
    Wang, Panpan
    Wu, Jiali
    Yan, Xin
    Yuan, Xueguang
    Zhang, Yangan
    Zhang, Xia
    MICROMACHINES, 2021, 12 (06)
  • [27] Dynamically Tunable Dual-Frequency Terahertz Absorber Based on Graphene Rings
    Su, Wei
    Chen, Xinyue
    Geng, Zhen
    IEEE PHOTONICS JOURNAL, 2019, 11 (06):
  • [28] A broadband absorber with multiple tunable functions for terahertz band based on graphene and vanadium dioxide
    Nie, Sihan
    Feng, Hengli
    Li, Xin
    Sun, Pengfei
    Zhou, Yaxin
    Su, Lijing
    Ran, Lingling
    Gao, Yang
    DIAMOND AND RELATED MATERIALS, 2023, 139
  • [29] Tunable wideband terahertz absorber based on single-layer patterned graphene
    Fu, Maixia
    Xia, Na
    Niu, Yingying
    Liu, Xueying
    Gao, Zhenheng
    Zhang, Yixin
    OPTICS COMMUNICATIONS, 2024, 570
  • [30] Switchable dual-broadband to single-broadband terahertz absorber based on hybrid graphene and vanadium dioxide metamaterials
    Hu, Dan
    Jia, Nan
    Zhu, Qiaofen
    PHYSICA SCRIPTA, 2023, 98 (06)