UAV-Based Remote Sensing Technique to Detect Citrus Canker Disease Utilizing Hyperspectral Imaging and Machine Learning

被引:174
作者
Abdulridha, Jaafar [1 ]
Batuman, Ozgur [2 ]
Ampatzidis, Yiannis [1 ]
机构
[1] Univ Florida, IFAS, Southwest Florida Res & Educ Ctr, Agr & Biol Engn Dept, 2685 SR 29 North, Immokalee, FL 34142 USA
[2] Univ Florida, IFAS, Southwest Florida Res & Educ Ctr, Dept Plant Pathol, 2685 SR 29 North, Immokalee, FL 34142 USA
关键词
citrus; canker; disease detection; hyperspectral imaging; neural networks; vegetation indices; AXONOPODIS PV.-CITRI; LAUREL WILT DISEASE; LEAF-AREA INDEX; VEGETATION INDEXES; SPECTRAL REFLECTANCE; CHLOROPHYLL CONTENT; NITROGEN STATUS; SPECTROSCOPY; ALGORITHMS; PREDICTION;
D O I
10.3390/rs11111373
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A remote sensing technique was developed to detect citrus canker in laboratory conditions and was verified in the grove by utilizing an unmanned aerial vehicle (UAV). In the laboratory, a hyperspectral (400-1000 nm) imaging system was utilized for the detection of citrus canker in several disease development stages (i.e., asymptomatic, early, and late symptoms) on Sugar Belle leaves and immature (green) fruit by using two classification methods: (i) radial basis function (RBF) and (ii) K nearest neighbor (KNN). The same imaging system mounted on an UAV was used to detect citrus canker on tree canopies in the orchard. The overall classification accuracy of the RBF was higher (94%, 96%, and 100%) than the KNN method (94%, 95%, and 96%) for detecting canker in leaves. Among the 31 studied vegetation indices, the water index (WI) and the Modified Chlorophyll Absorption in Reflectance Index (ARI and TCARI 1) more accurately detected canker in laboratory and in orchard conditions, respectively. Immature fruit was not a reliable tissue for early detection of canker. However, the proposed technique successfully distinguished the late stage canker-infected fruit with 92% classification accuracy. The UAV-based technique achieved 100% classification accuracy for identifying healthy and canker-infected trees.
引用
收藏
页数:22
相关论文
共 77 条
[1]   Stepwise discriminant analysis for colour grading of oil palm using machine vision system [J].
Abdullah, MZ ;
Guan, LC ;
Azemi, BMNM .
FOOD AND BIOPRODUCTS PROCESSING, 2001, 79 (C4) :223-231
[2]   A remote sensing technique for detecting laurel wilt disease in avocado in presence of other biotic and abiotic stresses [J].
Abdulridha, Jaafar ;
Ehsani, Reza ;
Abd-Elrahma, Amr ;
Ampatzidis, Yiannis .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2019, 156 :549-557
[3]   Evaluating the performance of spectral features and multivariate analysis tools to detect laurel wilt disease and nutritional deficiency in avocado [J].
Abdulridha, Jaafar ;
Ampatzidis, Yiannis ;
Ehsani, Reza ;
de Castro, Ana I. .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2018, 155 :203-211
[4]   Detection and Differentiation between Laurel Wilt Disease, Phytophthora Disease, and Salinity Damage Using a Hyperspectral Sensing Technique [J].
Abdulridha, Jaafar ;
Ehsani, Reza ;
de Castro, Ana .
AGRICULTURE-BASEL, 2016, 6 (04)
[5]   On the Potentiality of UAV Multispectral Imagery to Detect Flavescence doree and Grapevine Trunk Diseases [J].
Albetis, Johanna ;
Jacquin, Anne ;
Goulard, Michel ;
Poilve, Herve ;
Rousseau, Jacques ;
Clenet, Harold ;
Dedieu, Gerard ;
Duthoit, Sylvie .
REMOTE SENSING, 2019, 11 (01)
[6]   Detection of Flavescence doree Grapevine Disease Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery [J].
Albetis, Johanna ;
Duthoit, Sylvie ;
Guttler, Fabio ;
Jacquin, Anne ;
Goulard, Michel ;
Poilve, Herve ;
Feret, Jean-Baptiste ;
Dedieu, Gerard .
REMOTE SENSING, 2017, 9 (04)
[7]   UAV-Based High Throughput Phenotyping in Citrus Utilizing Multispectral Imaging and Artificial Intelligence [J].
Ampatzidis, Yiannis ;
Partel, Victor .
REMOTE SENSING, 2019, 11 (04)
[8]   iPathology: Robotic Applications and Management of Plants and Plant Diseases [J].
Ampatzidis, Yiannis ;
De Bellis, Luigi ;
Luvisi, Andrea .
SUSTAINABILITY, 2017, 9 (06)
[9]  
[Anonymous], 1998, P 7 ANN JPL AIRB EAR
[10]   Close-range hyperspectral image analysis for the early detection of stress responses in individual plants in a high-throughput phenotyping platform [J].
Asaari, Mohd Shahrimie Mohd ;
Mishra, Puneet ;
Mertens, Stien ;
Dhondt, Stijn ;
Inze, Dirk ;
Wuyts, Nathalie ;
Scheunders, Paul .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 138 :121-138