Binomial Thue equations and polynomial powers

被引:18
作者
Bennett, M. A. [1 ]
Gyory, K.
Mignotte, M.
Pinter, A.
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC, Canada
[2] Univ Debrecen, Hungarian Acad Sci, Number Theory Res Grp, Math Inst, Debrecen, Hungary
[3] Univ Strasbourg, Dept Math, Strasbourg, France
关键词
binomial Thue equations; superelliptic equations; explicit resolution;
D O I
10.1112/S0010437X06002181
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We explicitly solve a collection of binomial Thue equations with unknown degree and unknown S-unit coefficients, for a number of sets S of small cardinality. Equivalently, we characterize integers x such that the polynomial x(2) + x assumes perfect power values, modulo S-units. These results are proved through a combination of techniques, including Frey curves and associated modular forms, lower bounds for linear forms in logarithms, the hypergeometric method of Thue and Siegel, local methods, and computational approaches to Thue equations of low degree. Along the way, we derive some new results on Fermat-type ternary equations, combining classical cyclotomy with Frey curve techniques.
引用
收藏
页码:1103 / 1121
页数:19
相关论文
共 36 条
[1]  
AGOH T, 1977, TRU MATH, V13, P1
[3]   BOUNDS FOR SOLUTIONS OF HYPERELLIPTIC EQUATION [J].
BAKER, A .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 65 :439-&
[4]   On the Diophantine equation 1k+2k +...+ xk = yn [J].
Bennett, MA ;
Gyory, K ;
Pintér, A .
COMPOSITIO MATHEMATICA, 2004, 140 (06) :1417-1431
[5]   Ternary Diophantine equations of signature (p, p, 3) [J].
Bennett, MA ;
Vatsal, V ;
Yazdani, S .
COMPOSITIO MATHEMATICA, 2004, 140 (06) :1399-1416
[6]   Ternary diophantine equations via galois representations and modular forms [J].
Bennett, MA ;
Skinner, CM .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2004, 56 (01) :23-54
[7]  
Bennett Vicki J., 2001, BMC Chemical Biology, V1, P1, DOI 10.1186/1472-6769-1-1
[8]  
BOREVICH ZI, 1972, NUMBER THEORY
[9]   Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers [J].
Bugeaud, Yann ;
Mignotte, Maurice ;
Siksek, Samir .
ANNALS OF MATHEMATICS, 2006, 163 (03) :969-1018
[10]   A search for Wieferich and Wilson primes [J].
Crandall, R ;
Dilcher, K ;
Pomerance, C .
MATHEMATICS OF COMPUTATION, 1997, 66 (217) :433-449