Origin of the neighboring residue effect on peptide backbone conformation

被引:90
作者
Avbelj, F
Baldwin, RL
机构
[1] Natl Inst Chem, SI-1115 Ljubljana, Slovenia
[2] Stanford Univ, Med Ctr, Beckman Ctr, Dept Biochem, Stanford, CA 94305 USA
关键词
D O I
10.1073/pnas.0404050101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Unfolded peptides in water have some residual structure that may be important in the folding process, and the nature of the residual structure is currently of much interest. There is a neighboring residue effect on backbone conformation, discovered in 1997 from measurements of (3)J(HNalpha) coupling constants. The neighboring residue effect appears also in the "coil library" of Protein Data Bank structures of residues not in a-helix and not in beta-structure. When a neighboring residue (i - 1 or i + 1) belongs to class L (aromatic and beta-branched amino acids, FHITVWY) rather than class S (all others, G and P excluded), then the backbone angle 4 of residue i is more negative for essentially all amino acids. Calculated values of peptide solvation (electrostatic solvation free energy, ESF) predict basic properties of the neighboring residue effect. We show that L amino acids reduce the solvation of neighboring peptide groups more than S amino acids. When tripeptides from the coil library are excised to allow solvation, the central residues have more negative values of (phi) but less negative values of (ESF) with L than with S neighbors. The coil library values of ((3)J(HNalpha)), which vary strikingly among the amino acids, are correlated with the neighboring residue effect seen by ESF. Moreover, values for the "blocking effect" of side chains on the hydrogen exchange rates of peptide NH protons are correlated with ESF values.
引用
收藏
页码:10967 / 10972
页数:6
相关论文
共 36 条
[1]  
[Anonymous], BIOPHYSICAL CHEM
[2]   Role of backbone solvation and electrostatics in generating preferred peptide backbone conformations: Distributions of phi [J].
Avbelj, F ;
Baldwin, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (10) :5742-5747
[3]   Energetics of the interaction between water and the helical peptide group and its role in determining helix propensities [J].
Avbelj, F ;
Luo, PZ ;
Baldwin, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (20) :10786-10791
[4]   ROLE OF ELECTROSTATIC SCREENING IN DETERMINING PROTEIN MAIN-CHAIN CONFORMATIONAL PREFERENCES [J].
AVBELJ, F ;
MOULT, J .
BIOCHEMISTRY, 1995, 34 (03) :755-764
[5]   Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins [J].
Avbelj, F .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 300 (05) :1335-1359
[6]   Role of backbone solvation in determining thermodynamic β propensities of the amino acids [J].
Avbelj, F ;
Baldwin, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (03) :1309-1313
[7]  
BADLWIN RL, 2003, J BIOL CHEM, V278, P17581
[8]   HYDROGEN-BOND STRENGTH AND BETA-SHEET PROPENSITIES - THE ROLE OF A SIDE-CHAIN BLOCKING EFFECT [J].
BAI, YW ;
ENGLANDER, SW .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1994, 18 (03) :262-266
[9]   PRIMARY STRUCTURE EFFECTS ON PEPTIDE GROUP HYDROGEN-EXCHANGE [J].
BAI, YW ;
MILNE, JS ;
MAYNE, L ;
ENGLANDER, SW .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 17 (01) :75-86
[10]   CONFIGURATION OF RANDOM POLYPEPTIDE CHAINS .2. THEORY [J].
BRANT, DA ;
FLORY, PJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1965, 87 (13) :2791-&