Composite learning adaptive sliding mode control for AUV target tracking

被引:42
作者
Guo, Yuyan [1 ,2 ]
Qin, Hongde [3 ]
Xu, Bin [1 ,3 ]
Han, Yi [1 ]
Fan, Quan-Yong [1 ]
Zhang, Pengchao [4 ]
机构
[1] Northwestern Polytech Univ, Sch Automat, Xian 710000, Shaanxi, Peoples R China
[2] State Key Lab Robot & Syst HIT, Harbin 150000, Heilongjiang, Peoples R China
[3] Harbin Engn Univ, Sci & Technol Underwater Vehicle Lab, Harbin 150000, Heilongjiang, Peoples R China
[4] Shaanxi Univ Technol, Key Lab Ind Automat Shaanxi Prov, Hanzhong 723000, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Autonomous underwater vehicle; Target tracking; Sliding mode control; Composite learning; Neural networks; AUTONOMOUS UNDERWATER VEHICLE; SYSTEMS; INPUT; NETWORKS; DESIGN;
D O I
10.1016/j.neucom.2019.03.033
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper studies the controller design for an autonomous underwater vehicle (AUV) with the target tracking task. Considering the uncertainty the nonlinear longitudinal model, a sliding mode controller is designed. Meanwhile the neural networks (NNs) are used to approximate the unknown nonlinear function in the model. To improve the NNs learning rapidity, the prediction error which reflect the learning performance is constructed, further the updating law is designed utilizing the composite learning technique. The system stability is guaranteed through the Lyapunov approach. The simulation results verify that the designed method could force the AUV to track the target until rendezvous, and the model uncertainty is addressed better via the composite learning algorithm. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:180 / 186
页数:7
相关论文
共 50 条
[21]   Observer-based adaptive sliding mode control for robust tracking and model following [J].
Pai, Ming-Chang .
INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2013, 11 (02) :225-232
[22]   Iterative Learning Sliding Mode Control for UAV Trajectory Tracking [J].
Nguyen, Lanh Van ;
Phung, Manh Duong ;
Ha, Quang Phuc .
ELECTRONICS, 2021, 10 (20)
[23]   On adaptive sliding mode control for improved quadrotor tracking [J].
Nadda, Sudhir ;
Swarup, A. .
JOURNAL OF VIBRATION AND CONTROL, 2018, 24 (14) :3219-3230
[24]   Sliding Mode Neuro Adaptive Control in Trajectory Tracking for Mobile Robots [J].
Rossomando, Francisco G. ;
Soria, Carlos ;
Carelli, Ricardo .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2014, 74 (3-4) :931-944
[25]   Distributed Adaptive Sliding Mode Control for Attitude Tracking of Multiple Spacecraft [J].
Yang Dapeng ;
Liu Xiangdong ;
Li Zhongkui ;
Guo Yaohua .
2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, :6917-6922
[26]   Adaptive Iterating learning sliding mode control for output tracking of incommensurate fractional-order systems [J].
Razmjou, E. G. ;
Sani, S. K. Hosseini ;
Sadati, S. J. .
CONTROL ENGINEERING AND APPLIED INFORMATICS, 2018, 20 (04) :78-89
[27]   Nonlinear adaptive sliding mode tracking control of an airplane with wing damage [J].
Asadi, D. ;
Bagherzadeh, S. A. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2018, 232 (08) :1405-1420
[28]   Adaptive sliding mode and second order sliding mode control with applications: a survey [J].
Shtessel, Yuri ;
Plestan, Franck ;
Edwards, Christopher .
IFAC PAPERSONLINE, 2023, 56 (02) :761-772
[29]   Sliding mode control of MEMS gyroscopes using composite learning [J].
Zhang, Rui ;
Shao, Tianyi ;
Zhao, Wanliang ;
Li, Aijun ;
Xu, Bin .
NEUROCOMPUTING, 2018, 275 :2555-2564
[30]   Adaptive parallel fractional sliding mode control [J].
Munoz-Vazquez, Aldo Jonathan ;
Fernandez-Anaya, Guillermo ;
Sanchez-Torres, Juan Diego .
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2022, 36 (03) :751-759