A method for predicting non-equilibrium thermal expansion using steepest-entropy-ascent quantum thermodynamics

被引:14
|
作者
Yamada, Ryo [1 ]
von Spakovsky, Michael R. [2 ]
Reynolds, William T., Jr. [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Mat Sci & Engn Dept, Blacksburg, VA 24061 USA
[2] Virginia Polytech Inst & State Univ, Dept Mech Engn, Ctr Energy Syst Res, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
thermal expansion; steepest entropy ascent; nonequilibrium thermodynamics; first-principles calculation; GENERAL FORMALISM; COMPLEX FLUIDS; MECHANICS; DYNAMICS; DEFINITION; EQUATION; METALS; ENERGY; MOTION;
D O I
10.1088/1361-648X/aad072
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Steepest-entropy-ascent quantum thermodynamics (SEAQT) is an intriguing approach that describes equilibrium and dynamic processes in a self-consistent way. To date, it has been applied primarily to gas phase systems because of the difficulty in generating the complex eigenstructures (eigenvalues and eigenfunctions) associated with solid or liquid phases. In this contribution, the SEAQT modeling is extended to the solid phase by constructing a so-called pseudo-eigenstructure, and its applicability is demonstrated by calculating the thermal expansion of metallic silver for three cases: (a) stable equilibrium, (b) along three irreversible paths from different initial non-equilibrium states to stable equilibrium, and (c) along an irreversible path between two stable equilibrium states. The SEAQT framework with an anharmonic pseudo-eigenstructure predicts reasonable values for the equilibrium thermal expansion. For the irreversible cases considered, the SEAQT approach makes it possible to predict the time-dependence of lattice relaxations from the initial state to the final equilibrium state.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Entanglement and thermodynamics in non-equilibrium isolated quantum systems
    Calabrese, Pasquale
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 504 : 31 - 44
  • [42] The modification of entropy production by heat condution in non-equilibrium thermodynamics
    Dong Yuan
    Guo Zeng-Yuan
    ACTA PHYSICA SINICA, 2012, 61 (03)
  • [43] NON-EQUILIBRIUM THERMODYNAMICS OF THERMAL TRANSPIRATION OF A DISSOCIATING GAS
    RASTOGI, RP
    SRIVASTAVA, RC
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION A, 1954, 67 (415): : 639 - 640
  • [44] Thermal boundary resistance in semiconductors by non-equilibrium thermodynamics
    Dettori, R.
    Melis, C.
    Cartoixa, X.
    Rurali, R.
    Colombo, L.
    ADVANCES IN PHYSICS-X, 2016, 1 (02): : 246 - 261
  • [45] The role of quantum coherence in non-equilibrium entropy production
    Santos, Jader P.
    Celeri, Lucas C.
    Landi, Gabriel T.
    Paternostro, Mauro
    NPJ QUANTUM INFORMATION, 2019, 5 (1)
  • [46] The role of quantum coherence in non-equilibrium entropy production
    Jader P. Santos
    Lucas C. Céleri
    Gabriel T. Landi
    Mauro Paternostro
    npj Quantum Information, 5
  • [47] Comparing the Models of Steepest Entropy Ascent Quantum Thermodynamics, Master Equation and the Difference Equation for a Simple Quantum System Interacting with Reservoirs
    Smith, Charles E.
    ENTROPY, 2016, 18 (05)
  • [48] CHAPMAN-ENSKOG METHOD AND THE NON-EQUILIBRIUM THERMODYNAMICS
    ROLDUGIN, VI
    DOKLADY AKADEMII NAUK SSSR, 1982, 263 (03): : 606 - 609
  • [49] ON QUANTUM STATISTICAL BASIS OF NON-EQUILIBRIUM THERMODYNAMICS .1.
    VLIEGER, J
    DEGROOT, SR
    MAZUR, P
    PHYSICA, 1961, 27 (04): : 353 - &
  • [50] DISCUSSION OF QUANTUM THEORY OF DISSIPATIVE PROCESSES AND NON-EQUILIBRIUM THERMODYNAMICS
    LANDSBER.PT
    PRIGOGIN.I
    FROHLICH, H
    FUJITA, S
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1969, S 26 : 210 - &