A method for predicting non-equilibrium thermal expansion using steepest-entropy-ascent quantum thermodynamics

被引:14
|
作者
Yamada, Ryo [1 ]
von Spakovsky, Michael R. [2 ]
Reynolds, William T., Jr. [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Mat Sci & Engn Dept, Blacksburg, VA 24061 USA
[2] Virginia Polytech Inst & State Univ, Dept Mech Engn, Ctr Energy Syst Res, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
thermal expansion; steepest entropy ascent; nonequilibrium thermodynamics; first-principles calculation; GENERAL FORMALISM; COMPLEX FLUIDS; MECHANICS; DYNAMICS; DEFINITION; EQUATION; METALS; ENERGY; MOTION;
D O I
10.1088/1361-648X/aad072
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Steepest-entropy-ascent quantum thermodynamics (SEAQT) is an intriguing approach that describes equilibrium and dynamic processes in a self-consistent way. To date, it has been applied primarily to gas phase systems because of the difficulty in generating the complex eigenstructures (eigenvalues and eigenfunctions) associated with solid or liquid phases. In this contribution, the SEAQT modeling is extended to the solid phase by constructing a so-called pseudo-eigenstructure, and its applicability is demonstrated by calculating the thermal expansion of metallic silver for three cases: (a) stable equilibrium, (b) along three irreversible paths from different initial non-equilibrium states to stable equilibrium, and (c) along an irreversible path between two stable equilibrium states. The SEAQT framework with an anharmonic pseudo-eigenstructure predicts reasonable values for the equilibrium thermal expansion. For the irreversible cases considered, the SEAQT approach makes it possible to predict the time-dependence of lattice relaxations from the initial state to the final equilibrium state.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Predicting non-equilibrium folding behavior of polymer chains using the steepest-entropy-ascent quantum thermodynamic framework
    McDonald, Jared
    von Spakovsky, Michael R.
    Reynolds, William T.
    JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (10):
  • [2] Predicting continuous and discontinuous phase decompositions using steepest-entropy-ascent quantum thermodynamics
    Yamada, Ryo
    von Spakovsky, Michael R.
    Reynolds, William T., Jr.
    PHYSICAL REVIEW E, 2019, 99 (05)
  • [3] Atomistic-level non-equilibrium model for chemically reactive systems based on steepest-entropy-ascent quantum thermodynamics
    Li, Guanchen
    Al-Abbasi, Omar
    von Spakovsky, Michael R.
    SYMMETRIES IN SCIENCE XVI, 2014, 538
  • [4] Modeling the Non-Equilibrium Process of the Chemical Adsorption of Ammonia on GaN(0001) Reconstructed Surfaces Based on Steepest-Entropy-Ascent Quantum Thermodynamics
    Kusaba, Akira
    Li, Guanchen
    von Spakovsky, Michael R.
    Kangawa, Yoshihiro
    Kakimoto, Koichi
    MATERIALS, 2017, 10 (08):
  • [5] Low-temperature atomistic spin relaxation and non-equilibrium intensive properties using steepest-entropy-ascent quantum-inspired thermodynamics modeling
    Yamada, Ryo
    von Spakovsky, Michael R.
    Reynolds, William T., Jr.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (50)
  • [6] Model for predicting adsorption isotherms and the kinetics of adsorption via steepest-entropy-ascent quantum thermodynamics
    Adriana Saldana-Robles
    Cesar Damian
    William T. Reynolds
    Michael R. von Spakovsky
    Adsorption, 2025, 31 (5)
  • [7] Decoherence predictions in a superconducting quantum processor using the steepest-entropy-ascent quantum thermodynamics framework
    Montatiez-Barrera, J. A.
    von Spakovsky, Michael R.
    Ascencio, Cesar E. Damian
    Cano-Andrade, Sergio
    PHYSICAL REVIEW A, 2022, 106 (03)
  • [8] Quantum Nano-system Dynamics Based on the Steepest-Entropy-Ascent Quantum Thermodynamics
    Morishita, Tenpei
    Kobayashi, Kiyoshi
    Ishikawa, Akira
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2023, 92 (02)
  • [9] Predicting Polymer Brush Behavior in Solvents Using the Steepest-Entropy-Ascent Quantum Thermodynamic Framework
    McDonald, Jared
    von Spakovsky, Michael R.
    Reynolds, William T., Jr.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2023, 127 (48): : 10370 - 10391
  • [10] Predicting Ion Sequestration in Charged Polymers with the Steepest-Entropy-Ascent Quantum Thermodynamic Framework
    Mcdonald, Jared
    von Spakovsky, Michael R.
    Reynolds, William T.
    NANOMATERIALS, 2024, 14 (05)