Fabrication techniques of biomimetic scaffolds in three-dimensional cell culture: A review

被引:65
作者
Badekila, Anjana K. [1 ]
Kini, Sudarshan [1 ]
Jaiswal, Amit K. [2 ]
机构
[1] Nitte Deemed Univ, Nitte Univ Ctr Sci Educ & Res NUCSER, Mangalore, Karnataka, India
[2] Vellore Inst Technol, Ctr Biomat Cellular & Mol Theranost, Vellore, Tamil Nadu, India
关键词
3D cell culture; bioprinting; fabrication techniques; hydrogels; scaffolds; MICROSPHERE-BASED SCAFFOLDS; PLURIPOTENT STEM-CELLS; POLYGLYCOLIC ACID SCAFFOLDS; 3D CULTURE; POLYMERIC SCAFFOLDS; BACTERIAL CELLULOSE; POROUS SCAFFOLDS; TISSUE; SYSTEMS; SPHEROIDS;
D O I
10.1002/jcp.29935
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In the last four decades, several researchers worldwide have routinely and meticulously exercised cell culture experiments in two-dimensional (2D) platforms. Using traditionally existing 2D models, the therapeutic efficacy of drugs has been inappropriately validated due to the failure in generating the precise therapeutic response. Fortunately, a 3D model addresses the foregoing limitations by recapitulating the in vivo environment. In this context, one has to contemplate the design of an appropriate scaffold for favoring the organization of cell microenvironment. Instituting pertinent model on the platter will pave way for a precise mimicking of in vivo conditions. It is because animal cells in scaffolds oblige spontaneous formation of 3D colonies that molecularly, phenotypically, and histologically resemble the native environment. The 3D culture provides insight into the biochemical aspects of cell-cell communication, plasticity, cell division, cytoskeletal reorganization, signaling mechanisms, differentiation, and cell death. Focusing on these criteria, this paper discusses in detail, the diversification of polymeric scaffolds based on their available resources. The paper also reviews the well-founded and latest techniques of scaffold fabrication, and their applications pertaining to tissue engineering, drug screening, and tumor model development.
引用
收藏
页码:741 / 762
页数:22
相关论文
共 150 条
[1]   Organoid and Organ-on-a-Chip Systems: New Paradigms for Modeling Neurological and Gastrointestinal Disease [J].
Akhtar A.A. ;
Sances S. ;
Barrett R. ;
Breunig J.J. .
Current Stem Cell Reports, 2017, 3 (2) :98-111
[2]   Silver-pig skin nanocomposites and mesenchymal stem cells: suitable antibiofilm cellular dressings for wound healing [J].
Alberto Perez-Diaz, Mario ;
Silva-Bermudez, Phaedra ;
Jimenez-Lopez, Binisa ;
Martinez-Lopez, Valentin ;
Melgarejo-Ramirez, Yaaziel ;
Brena-Molina, Ana ;
Ibarra, Clemente ;
Baeza, Isabel ;
Esther Martinez-Pardo, M. ;
Lourdes Reyes-Frias, M. ;
Marquez-Gutierrez, Erik ;
Velasquillo, Cristina ;
Martinez-Castanon, Gabriel ;
Martinez-Gutierrez, Fidel ;
Sanchez-Sanchez, Roberto .
JOURNAL OF NANOBIOTECHNOLOGY, 2018, 16
[3]   Microfragmented human fat tissue is a natural scaffold for drug delivery: Potential application in cancer chemotherapy [J].
Alessandri, Giulio ;
Cocce, Valentina ;
Pastorino, Fabio ;
Paroni, Rita ;
Cas, Michele Dei ;
Restelli, Francesco ;
Pollo, Bianca ;
Gatti, Laura ;
Tremolada, Carlo ;
Berenzi, Angiola ;
Parati, Eugenio ;
Brini, Anna Teresa ;
Bondiolotti, Gianpietro ;
Ponzoni, Mirco ;
Pessina, Augusto .
JOURNAL OF CONTROLLED RELEASE, 2019, 302 :2-18
[4]   Behavior of human chondrocytes in engineered porous bacterial cellulose scaffolds [J].
Andersson, Jessica ;
Stenhamre, Hanna ;
Backdahl, Henrik ;
Gatenholm, Paul .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2010, 94A (04) :1124-1132
[5]   Chitosan-hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds [J].
Anisha, B. S. ;
Biswas, Raja ;
Chennazhi, K. P. ;
Jayakumar, R. .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2013, 62 :310-320
[6]   Three-Dimensional Cell Culture: A Breakthrough in Vivo [J].
Antoni, Delphine ;
Burckel, Helene ;
Josset, Elodie ;
Noel, Georges .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2015, 16 (03) :5517-5527
[7]   Volume-by-volume bioprinting of chondrocytes-alginate bioinks in high temperature thermoplastic scaffolds for cartilage regeneration [J].
Baena, J. M. ;
Jimenez, G. ;
Lopez-Ruiz, E. ;
Anticht, C. ;
Grinan-Lison, C. ;
Peran, M. ;
Galvez-Martin, P. ;
Marchal, J. A. .
EXPERIMENTAL BIOLOGY AND MEDICINE, 2019, 244 (01) :13-21
[8]   Star poly(ε-caprolactone)-based electrospun fibers as biocompatible scaffold for doxorubicin with prolonged drug release activity [J].
Balakrishnan, Preethi Bala ;
Gardella, Lorenza ;
Forouharshad, Mandi ;
Pellegrino, Teresa ;
Monticelli, Orietta .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2018, 161 :488-496
[9]   Advancing Science and Technology Via 3D Culture on Basement Membrane Matrix [J].
Benton, G. ;
George, J. ;
Kleinman, H. K. ;
Arnaoutova, I. P. .
JOURNAL OF CELLULAR PHYSIOLOGY, 2009, 221 (01) :18-25
[10]   Silk scaffolds in bone tissue engineering: An overview [J].
Bhattacharjee, Promita ;
Kundu, Banani ;
Naskar, Deboki ;
Kim, Hae-Won ;
Maiti, Tapas K. ;
Bhattacharya, Debasis ;
Kundu, Subhas C. .
ACTA BIOMATERIALIA, 2017, 63 :1-17