Parameter inference with estimated covariance matrices

被引:186
作者
Sellentin, Elena [1 ]
Heavens, Alan F. [2 ]
机构
[1] Heidelberg Univ, Inst Theoret Phys, D-69120 Heidelberg, Germany
[2] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Dept Phys, ICIC, London SW7 2AZ, England
关键词
methods: data analysis; methods: statistical; cosmology: observations;
D O I
10.1093/mnrasl/slv190
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
When inferring parameters from a Gaussian-distributed data set by computing a likelihood, a covariance matrix is needed that describes the data errors and their correlations. If the covariance matrix is not known a priori, it may be estimated and thereby becomes a random object with some intrinsic uncertainty itself. We show how to infer parameters in the presence of such an estimated covariance matrix, by marginalizing over the true covariance matrix, conditioned on its estimated value. This leads to a likelihood function that is no longer Gaussian, but rather an adapted version of a multivariate t-distribution, which has the same numerical complexity as the multivariate Gaussian. As expected, marginalization over the true covariance matrix improves inference when compared with Hartlap et al.' s method, which uses an unbiased estimate of the inverse covariance matrix but still assumes that the likelihood is Gaussian.
引用
收藏
页码:L132 / L136
页数:5
相关论文
共 12 条
[1]  
Anderson T. W., 1962, INTRO MULTIVARIATE S
[2]   Angular clustering with photometric redshifts in the Sloan Digital Sky Survey:: Bimodality in the clustering properties of galaxies [J].
Budavári, T ;
Connolly, AJ ;
Szalay, AS ;
Szapudi, I ;
Csabai, I ;
Scranton, R ;
Bahcall, NA ;
Brinkmann, J ;
Eisenstein, DJ ;
Frieman, JA ;
Fukugita, M ;
Gunn, JE ;
Johnston, D ;
Kent, S ;
Loveday, JN ;
Lupton, RH ;
Tegmark, M ;
Thakar, AR ;
Yanny, B ;
York, DG ;
Zehavi, I .
ASTROPHYSICAL JOURNAL, 2003, 595 (01) :59-70
[3]   The effect of covariance estimator error on cosmological parameter constraints [J].
Dodelson, Scott ;
Schneider, Michael D. .
PHYSICAL REVIEW D, 2013, 88 (06)
[4]   Properties and use of CMB power spectrum likelihoods [J].
Hamimeche, Samira ;
Lewis, Antony .
PHYSICAL REVIEW D, 2009, 79 (08)
[5]   Why your model parameter confidences might be too optimistic. Unbiased estimation of the inverse covariance matrix [J].
Hartlap, J. ;
Simon, P. ;
Schneider, P. .
ASTRONOMY & ASTROPHYSICS, 2007, 464 (01) :399-404
[6]   CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments [J].
Heymans, Catherine ;
Grocutt, Emma ;
Heavens, Alan ;
Kilbinger, Martin ;
Kitching, Thomas D. ;
Simpson, Fergus ;
Benjamin, Jonathan ;
Erben, Thomas ;
Hildebrandt, Hendrik ;
Hoekstra, Henk ;
Mellier, Yannick ;
Miller, Lance ;
Van Waerbeke, Ludovic ;
Brown, Michael L. ;
Coupon, Jean ;
Fu, Liping ;
Harnois-Deraps, Joachim ;
Hudson, Michael J. ;
Kuijken, Konrad ;
Rowe, Barnaby ;
Schrabback, Tim ;
Semboloni, Elisabetta ;
Vafaei, Sanaz ;
Velander, Malin .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 432 (03) :2433-2453
[7]  
Jeffreys H, 1998, THEORY PROBABILITY
[8]  
Mardia K., 1979, PROBABILITY MATH STA
[9]   Cosmic shear analysis with CFHTLS deep data [J].
Semboloni, E. ;
Mellier, Y. ;
van Waerbeke, L. ;
Hoekstra, H. ;
Tereno, I. ;
Benabed, K. ;
Gwyn, S. D. J. ;
Fu, L. ;
Hudson, M. J. ;
Maoli, R. ;
Parker, L. C. .
ASTRONOMY & ASTROPHYSICS, 2006, 452 (01) :51-61
[10]  
Sun D., 2006, P VAL ISBA 8 WORLD M