A Number of Limit Cycle of Sextic Polynomial Differential Systems via the Averaging Theory

被引:4
|
作者
Menaceur, Amor [1 ]
Boulaaras, Salah [2 ,3 ]
机构
[1] Guelma Univ, Fac MISM, Dept Math, POB 401, Guelma 24000, Algeria
[2] Qassim Univ, Coll Sci & Arts, Dept Math, Buraydah, Saudi Arabia
[3] Univ Sci & Technol Oran, Fac Sci, Dept Math, Bir El Djir, Algeria
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2021年 / 39卷 / 04期
关键词
Limit cycle; Averaging method; Conic; Sextic polynomial differential systems (SPDS); BIFURCATIONS;
D O I
10.5269/bspm.41922
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this paper is to study the number of limit cycles of sextic polynomial differential systems (SPDS) via the averaging theory which is an extension to the study of cubic polynomial vector fields in (Nonlinear Analysis 66 (2007), 1707-1721), where we provide an accurate upper bound of the maximum number of limit cycles that SPDS can have bifurcating from the period annulus surrounding the origin of a class of cubic system.
引用
收藏
页码:181 / 197
页数:17
相关论文
共 50 条