Electron velocity distribution moments for collisional inhomogeneous plasma in crossed electric and magnetic fields

被引:2
作者
Shagayda, A. A. [1 ]
Stepin, S. A. [2 ]
Tarasov, A. G. [1 ]
机构
[1] Keldysh Res Ctr, Dept Electrophys, Moscow 125438, Russia
[2] Moscow MV Lomonosov State Univ, Fac Mech & Math, Moscow 119991, Russia
关键词
Mathematical Physic; Asymptotic Formula; Remainder Term; Central Moment; Laplace Method;
D O I
10.1134/S1061920815040135
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a stationary kinetic equation describing the electron component of nonequilibrium plasma in crossed electric and magnetic fields. The collision integral is taken in the so-called relaxation (BGK) approximation. It is assumed that the plasma parameters vary only along the electric field. Using the Laplace method, asymptotic formulas for the moments of the distribution function including components of the stress tensor and heat flux vector are obtained with a qualified estimate of the remainder.
引用
收藏
页码:532 / 545
页数:14
相关论文
共 13 条
[1]  
Braginskii S., 1963, REV PLASMA PHYS, P1
[2]  
Cercignani C., 1969, Mathematical methods in kinetic theory
[3]  
Chapman S., 1990, The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases
[4]  
CHEN FF, 1974, INTRO PLASMA PHYS CO
[5]  
Copson E. T., 1965, Asymptotic Expansions
[6]  
Erdeyli A., 1956, ASYMPTOTIC EXPANSION
[7]  
Fedoruk, 1984, ASYMPTOTICS INTEGRAL
[8]  
Ferziger J. H., 1972, Mathematical Theory of Transport Processes in Gases
[9]  
Golant V. E., 1980, Fundamentals of Plasma Physics
[10]  
Kogan M., 1969, RARE FIED GASES DYNA