Monotonic stable solutions for minimum coloring games
被引:9
|
作者:
Hamers, H.
论文数: 0引用数: 0
h-index: 0
机构:
Tilburg Univ, CentER, NL-5000 LE Tilburg, Netherlands
Tilburg Univ, Dept Econometr & OR, NL-5000 LE Tilburg, NetherlandsTilburg Univ, CentER, NL-5000 LE Tilburg, Netherlands
Hamers, H.
[1
,2
]
Miquel, S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lleida, Dept Matemat, Lleida, SpainTilburg Univ, CentER, NL-5000 LE Tilburg, Netherlands
Miquel, S.
[3
]
Norde, H.
论文数: 0引用数: 0
h-index: 0
机构:
Tilburg Univ, CentER, NL-5000 LE Tilburg, Netherlands
Tilburg Univ, Dept Econometr & OR, NL-5000 LE Tilburg, NetherlandsTilburg Univ, CentER, NL-5000 LE Tilburg, Netherlands
Norde, H.
[1
,2
]
机构:
[1] Tilburg Univ, CentER, NL-5000 LE Tilburg, Netherlands
For the class of minimum coloring games (introduced by Deng et al. Math Oper Res, 24:751-766, 1999) we investigate the existence of population monotonic allocation schemes (introduced by Sprumont Games Econ Behav 2:378-394, 1990). We show that a minimum coloring game on a graph has a population monotonic allocation scheme if and only if is -free (or, equivalently, if its complement graph is quasi-threshold). Moreover, we provide a procedure that for these graphs always selects an integer population monotonic allocation scheme.