Monotonic stable solutions for minimum coloring games

被引:9
|
作者
Hamers, H. [1 ,2 ]
Miquel, S. [3 ]
Norde, H. [1 ,2 ]
机构
[1] Tilburg Univ, CentER, NL-5000 LE Tilburg, Netherlands
[2] Tilburg Univ, Dept Econometr & OR, NL-5000 LE Tilburg, Netherlands
[3] Univ Lleida, Dept Matemat, Lleida, Spain
关键词
Minimum coloring game; Population monotonic allocation scheme; (P-4; 2K(2))-free graph; Quasi-threshold graph; COMBINATORIAL OPTIMIZATION GAMES; PRODUCTION-INVENTORY GAMES; CORE; GRAPHS; POINT;
D O I
10.1007/s10107-013-0655-y
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
For the class of minimum coloring games (introduced by Deng et al. Math Oper Res, 24:751-766, 1999) we investigate the existence of population monotonic allocation schemes (introduced by Sprumont Games Econ Behav 2:378-394, 1990). We show that a minimum coloring game on a graph has a population monotonic allocation scheme if and only if is -free (or, equivalently, if its complement graph is quasi-threshold). Moreover, we provide a procedure that for these graphs always selects an integer population monotonic allocation scheme.
引用
收藏
页码:509 / 529
页数:21
相关论文
共 50 条
  • [21] A monotonic core solution for convex TU games
    Arin, J.
    Katsev, I.
    INTERNATIONAL JOURNAL OF GAME THEORY, 2016, 45 (04) : 1013 - 1029
  • [22] Population monotonic allocation schemes in bankruptcy games
    Grahn, S
    Voorneveld, M
    ANNALS OF OPERATIONS RESEARCH, 2002, 109 (1-4) : 317 - 329
  • [23] Activation strategy for relaxed asymmetric coloring games
    Yang, Daqing
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3323 - 3335
  • [24] Minimum coloring problems with weakly perfect graphs
    Eric Bahel
    Christian Trudeau
    Review of Economic Design, 2022, 26 : 211 - 231
  • [25] Complexity results for minimum sum edge coloring
    Daniel Marx
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (05) : 1034 - 1045
  • [26] Minimum multiplicity edge coloring via orientation
    Bampas, Evangelos
    Karousatou, Christina
    Pagourtzis, Aris
    Potika, Katerina
    DISCRETE APPLIED MATHEMATICS, 2018, 247 : 380 - 388
  • [27] Minimum Cut Tree Games
    Schwahn, Anne M.
    2009 INTERNATIONAL CONFERENCE ON GAME THEORY FOR NETWORKS (GAMENETS 2009), 2009, : 17 - 25
  • [28] Population monotonic allocation schemes for vertex cover games
    Xiao, Han
    Fang, Qizhi
    Du, Ding-Zhu
    THEORETICAL COMPUTER SCIENCE, 2020, 842 : 41 - 49
  • [29] A pairwise-monotonic core selection for permutation games
    Miquel, Silvia
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2009, 70 (03) : 465 - 475
  • [30] A pairwise-monotonic core selection for permutation games
    Silvia Miquel
    Mathematical Methods of Operations Research, 2009, 70 : 465 - 475