Monotonic stable solutions for minimum coloring games

被引:9
|
作者
Hamers, H. [1 ,2 ]
Miquel, S. [3 ]
Norde, H. [1 ,2 ]
机构
[1] Tilburg Univ, CentER, NL-5000 LE Tilburg, Netherlands
[2] Tilburg Univ, Dept Econometr & OR, NL-5000 LE Tilburg, Netherlands
[3] Univ Lleida, Dept Matemat, Lleida, Spain
关键词
Minimum coloring game; Population monotonic allocation scheme; (P-4; 2K(2))-free graph; Quasi-threshold graph; COMBINATORIAL OPTIMIZATION GAMES; PRODUCTION-INVENTORY GAMES; CORE; GRAPHS; POINT;
D O I
10.1007/s10107-013-0655-y
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
For the class of minimum coloring games (introduced by Deng et al. Math Oper Res, 24:751-766, 1999) we investigate the existence of population monotonic allocation schemes (introduced by Sprumont Games Econ Behav 2:378-394, 1990). We show that a minimum coloring game on a graph has a population monotonic allocation scheme if and only if is -free (or, equivalently, if its complement graph is quasi-threshold). Moreover, we provide a procedure that for these graphs always selects an integer population monotonic allocation scheme.
引用
收藏
页码:509 / 529
页数:21
相关论文
共 50 条
  • [1] Monotonic stable solutions for minimum coloring games
    H. Hamers
    S. Miquel
    H. Norde
    Mathematical Programming, 2014, 145 : 509 - 529
  • [2] Core stability of minimum coloring games
    Bietenhader, Thomas
    Okamoto, Yoshio
    MATHEMATICS OF OPERATIONS RESEARCH, 2006, 31 (02) : 418 - 431
  • [3] Aggregate monotonic stable single-valued solutions for cooperative games
    Pedro Calleja
    Carles Rafels
    Stef Tijs
    International Journal of Game Theory, 2012, 41 : 899 - 913
  • [4] Aggregate monotonic stable single-valued solutions for cooperative games
    Calleja, Pedro
    Rafels, Carles
    Tijs, Stef
    INTERNATIONAL JOURNAL OF GAME THEORY, 2012, 41 (04) : 899 - 913
  • [5] Simple and three-valued simple minimum coloring games
    Musegaas, M.
    Borm, P. E. M.
    Quant, M.
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2016, 84 (02) : 239 - 258
  • [6] On the existence of population-monotonic solutions on the domain of quasi-convex games
    Hokari, Toru
    Uchida, Seigo
    OPERATIONS RESEARCH LETTERS, 2017, 45 (01) : 90 - 92
  • [7] Minimum coloring problems with weakly perfect graphs
    Bahel, Eric
    Trudeau, Christian
    REVIEW OF ECONOMIC DESIGN, 2022, 26 (02) : 211 - 231
  • [8] Additive stable solutions on perfect cones of cooperative games
    Stef Tijs
    Rodica Brânzei
    International Journal of Game Theory, 2003, 31 : 469 - 474
  • [9] Additive stable solutions on perfect cones of cooperative games
    Tijs, S
    Brânzei, R
    INTERNATIONAL JOURNAL OF GAME THEORY, 2003, 31 (03) : 469 - 474
  • [10] The complexity of minimum convex coloring
    Kammer, Frank
    Tholey, Torsten
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (06) : 810 - 833