Monotonic stable solutions for minimum coloring games

被引:9
作者
Hamers, H. [1 ,2 ]
Miquel, S. [3 ]
Norde, H. [1 ,2 ]
机构
[1] Tilburg Univ, CentER, NL-5000 LE Tilburg, Netherlands
[2] Tilburg Univ, Dept Econometr & OR, NL-5000 LE Tilburg, Netherlands
[3] Univ Lleida, Dept Matemat, Lleida, Spain
关键词
Minimum coloring game; Population monotonic allocation scheme; (P-4; 2K(2))-free graph; Quasi-threshold graph; COMBINATORIAL OPTIMIZATION GAMES; PRODUCTION-INVENTORY GAMES; CORE; GRAPHS; POINT;
D O I
10.1007/s10107-013-0655-y
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
For the class of minimum coloring games (introduced by Deng et al. Math Oper Res, 24:751-766, 1999) we investigate the existence of population monotonic allocation schemes (introduced by Sprumont Games Econ Behav 2:378-394, 1990). We show that a minimum coloring game on a graph has a population monotonic allocation scheme if and only if is -free (or, equivalently, if its complement graph is quasi-threshold). Moreover, we provide a procedure that for these graphs always selects an integer population monotonic allocation scheme.
引用
收藏
页码:509 / 529
页数:21
相关论文
共 18 条
[1]   Core stability of minimum coloring games [J].
Bietenhader, Thomas ;
Okamoto, Yoshio .
MATHEMATICS OF OPERATIONS RESEARCH, 2006, 31 (02) :418-431
[2]  
BORM P, 2001, TOP, V9, P139
[3]   SEQUENCING GAMES [J].
CURIEL, I ;
PEDERZOLI, G ;
TIJS, S .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1989, 40 (03) :344-351
[4]   Algorithmic aspects of the core of combinatorial optimization games [J].
Deng, XT ;
Ibaraki, T ;
Nagamochi, H .
MATHEMATICS OF OPERATIONS RESEARCH, 1999, 24 (03) :751-766
[5]   Totally balanced combinatorial optimization games [J].
Deng, XT ;
Ibaraki, T ;
Nagamochi, H ;
Zang, WN .
MATHEMATICAL PROGRAMMING, 2000, 87 (03) :441-452
[6]   TRIVIALLY PERFECT GRAPHS [J].
GOLUMBIC, MC .
DISCRETE MATHEMATICS, 1978, 24 (01) :105-107
[7]   On some balanced, totally balanced and submodular delivery games [J].
Granot, D ;
Hamers, H ;
Tijs, S .
MATHEMATICAL PROGRAMMING, 1999, 86 (02) :355-366
[8]   Production-inventory games and PMAS-games: Characterizations of the Owen point [J].
Guardiola, Luis A. ;
Meca, Ana ;
Puerto, Justo .
MATHEMATICAL SOCIAL SCIENCES, 2008, 56 (01) :96-108
[9]   Production-inventory games: A new class of totally balanced combinatorial optimization games [J].
Guardiola, Luis A. ;
Meca, Ana ;
Puerto, Justo .
GAMES AND ECONOMIC BEHAVIOR, 2009, 65 (01) :205-219
[10]  
Herer Y., 1995, P AM MATH SOC, V123, P613