COMPUTATIONAL ALGORITHM FOR SOLVING THE DIOPHANTINE EQUATIONS 2n ± α . 2m + α2 = x2

被引:0
作者
Szalay, Laszlo [1 ]
机构
[1] J Selye Univ, Bratislavska Cesta 3322, Komarno 94501, Slovakia
来源
HOUSTON JOURNAL OF MATHEMATICS | 2020年 / 46卷 / 02期
关键词
Computational algorithm; diophantine equations; polynomial-exponential equations; number of bits in squares; PERFECT POWERS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct an algorithm for solving the diophantine equations 2(n) +/- alpha . 2(m) + alpha(2) = x(2), where a is a given odd prime such that 2 is a non-quadratic residue modulo a. Applying the implementation of the procedure in Maple, apart from the plus case with the condition n < m we solve completely the problem for alpha < 3 . 10(6). The theoretical background relies on the treatment worked out to solve the equation 2(n) + 2(m) + 1 = x(2).
引用
收藏
页码:295 / 306
页数:12
相关论文
共 8 条
[1]   PERFECT POWERS WITH THREE DIGITS [J].
Bennett, Michael A. ;
Bugeaud, Yann .
MATHEMATIKA, 2014, 60 (01) :66-84
[2]   Perfect powers with few binary digits and related Diophantine problems, II [J].
Bennett, Michael A. ;
Bugeaud, Yann ;
Mignotte, Maurice .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2012, 153 :525-540
[3]  
Berczes A., 2016, J COMB NUMBER THEORY, V8, P145
[4]   ON THE GENERALIZED RAMANUJAN-NAGELL EQUATION-I [J].
BEUKERS, F .
ACTA ARITHMETICA, 1981, 38 (04) :389-410
[5]  
Gueth K, 2018, ACTA MATH UNIV COMEN, V87, P199
[6]   On the Diophantine equation 1+2a + xb = yn [J].
Hajdu, Lajos ;
Pink, Istvan .
JOURNAL OF NUMBER THEORY, 2014, 143 :1-13
[7]   The diophantine equation x2=pa±pb+1 [J].
Luca, F .
ACTA ARITHMETICA, 2004, 112 (01) :87-101
[8]   The equations 2N ± 2M ± 2L = z2 [J].
Szalay, L .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2002, 13 (01) :131-142