Direct estimation of differential networks

被引:98
作者
Zhao, Sihai Dave [1 ]
Cai, T. Tony [2 ]
Li, Hongzhe [1 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Biostat & Epidemiol, Philadelphia, PA 19104 USA
[2] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Differential network; Graphical model; High dimensionality; Precision matrix; INVERSE COVARIANCE ESTIMATION; MODEL SELECTION; SPARSE SIGNALS; OVARIAN-CANCER; RECOVERY; TRAIL; REGRESSION; TARGETS; THERAPY; BIOLOGY;
D O I
10.1093/biomet/asu009
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is often of interest to understand how the structure of a genetic network differs between two conditions. In this paper, each condition-specific network is modelled using the precision matrix of a multivariate normal random vector, and a method is proposed to directly estimate the difference of the precision matrices. In contrast to other approaches, such as separate or joint estimation of the individual matrices, direct estimation does not require those matrices to be sparse, and thus can allow the individual networks to contain hub nodes. Under the assumption that the true differential network is sparse, the direct estimator is shown to be consistent in support recovery and estimation. It is also shown to outperform existing methods in simulations, and its properties are illustrated on gene expression data from late-stage ovarian cancer patients.
引用
收藏
页码:253 / 268
页数:16
相关论文
共 48 条
[1]  
[Anonymous], 2014, The R Foundation for Statistical Computing
[2]  
[Anonymous], 2006, Journal of the Royal Statistical Society, Series B
[3]   Rewiring of Genetic Networks in Response to DNA Damage [J].
Bandyopadhyay, Sourav ;
Mehta, Monika ;
Kuo, Dwight ;
Sung, Min-Kyung ;
Chuang, Ryan ;
Jaehnig, Eric J. ;
Bodenmiller, Bernd ;
Licon, Katherine ;
Copeland, Wilbert ;
Shales, Michael ;
Fiedler, Dorothea ;
Dutkowski, Janusz ;
Guenole, Aude ;
van Attikum, Haico ;
Shokat, Kevan M. ;
Kolodner, Richard D. ;
Huh, Won-Ki ;
Aebersold, Ruedi ;
Keogh, Michael-Christopher ;
Krogan, Nevan J. ;
Ideker, Trey .
SCIENCE, 2010, 330 (6009) :1385-1389
[4]   Network biology:: Understanding the cell's functional organization [J].
Barabási, AL ;
Oltvai, ZN .
NATURE REVIEWS GENETICS, 2004, 5 (02) :101-U15
[5]   Network medicine: a network-based approach to human disease [J].
Barabasi, Albert-Laszlo ;
Gulbahce, Natali ;
Loscalzo, Joseph .
NATURE REVIEWS GENETICS, 2011, 12 (01) :56-68
[6]   TRAIL Agonists on Clinical Trials for Cancer Therapy: The Promises and the Challenges [J].
Bellail, Anita C. ;
Qi, Ling ;
Mulligan, Patrick ;
Chhabra, Vaninder ;
Hao, Chunhai .
REVIEWS ON RECENT CLINICAL TRIALS, 2009, 4 (01) :34-41
[7]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[8]   Shifting Inequality and Recovery of Sparse Signals [J].
Cai, T. Tony ;
Wang, Lie ;
Xu, Guangwu .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) :1300-1308
[9]   On Recovery of Sparse Signals Via l1 Minimization [J].
Cai, T. Tony ;
Xu, Guangwu ;
Zhang, Jun .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (07) :3388-3397
[10]   A Direct Estimation Approach to Sparse Linear Discriminant Analysis [J].
Cai, Tony ;
Liu, Weidong .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (496) :1566-1577