A note on immersion minors and planarity

被引:2
作者
Wagner, Donald K. [1 ]
机构
[1] Off Naval Res, Math Comp & Informat Sci Div, Arlington, VA 22203 USA
关键词
Graph immersion; Graph minors; MATROIDS; GRAPHS;
D O I
10.1016/j.disc.2018.02.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Graph minors play an important role in graph theory. The focus of this paper is on immersion minors and their relationship to planarity. In general, planar graphs can have non-planar immersion minors. This paper shows that by placing a simple restriction on the immersion-minor operations, all immersion minors of a planar graph are planar. This then allows one to easily obtain a characterization of planar graphs using immersion minors. A dual form of this characterization, as well as an extension to binary matroids, are also considered. Published by Elsevier B.V.
引用
收藏
页码:1605 / 1612
页数:8
相关论文
共 14 条
  • [1] KURATOWSKIS AND WAGNERS THEOREMS FOR MATROIDS
    BIXBY, RE
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1977, 22 (01) : 31 - 53
  • [2] STRENGTHENED FORM OF TUTTES CHARACTERIZATION OF REGULAR MATROIDS
    BIXBY, RE
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1976, 20 (03) : 216 - 221
  • [3] Fast algorithms for K4 immersion testing
    Booth, HD
    Govindan, R
    Langston, MA
    Ramachandramurthi, S
    [J]. JOURNAL OF ALGORITHMS, 1999, 30 (02) : 344 - 378
  • [4] Bipartite minors
    Chudnovsky, Maria
    Kalai, Gil
    Nevo, Eran
    Novik, Isabella
    Seymour, Paul
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 116 : 219 - 228
  • [5] Immersing small complete graphs
    DeVos, Matt
    Kawarabayashi, Ken-ichi
    Mohar, Bojan
    Okamura, Haruko
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2010, 3 (02) : 139 - 146
  • [6] Fleischner H., 1983, SELECTED TOPICS GRAP, V2, P17
  • [7] Forbidding Kuratowski Graphs as Immersions
    Giannopoulou, Archontia C.
    Kaminski, Marcin
    Thilikos, Dimitrios M.
    [J]. JOURNAL OF GRAPH THEORY, 2015, 78 (01) : 43 - 60
  • [8] Kuratowski C., 1930, FUND MATH, V15, P271
  • [9] OxLEY J. G., 2011, Matroid Theory, V2nd
  • [10] Splitting in a binary matroid
    Raghunathan, TT
    Shikare, MM
    Waphare, BN
    [J]. DISCRETE MATHEMATICS, 1998, 184 (1-3) : 267 - 271