Transport characteristics of isorhamnetin across intestinal Caco-2 cell monolayers and the effects of transporters on it

被引:38
|
作者
Duan, Jingze [1 ,2 ]
Xie, Yan [2 ]
Luo, Huilin [2 ,3 ]
Li, Guowen [4 ]
Wu, Tao [1 ]
Zhang, Tong [3 ]
机构
[1] Shanghai Univ Tradit Chinese Med, Inst Chinese Mat Med, Shanghai 201203, Peoples R China
[2] Shanghai Univ Tradit Chinese Med, Res Ctr Hlth & Nutr, Shanghai 201203, Peoples R China
[3] Shanghai Univ Tradit Chinese Med, Expt Ctr Teaching & Learning, Shanghai 201203, Peoples R China
[4] Shanghai TCM Integrated Hosp, Dept Pharm, Shanghai 200082, Peoples R China
基金
美国国家科学基金会;
关键词
Absorption mechanism; Transport; Isorhamnetin; Caco-2; cell; Transporters; RESISTANCE-ASSOCIATED PROTEIN-2; IN-VITRO; FLAVONOID QUERCETIN; P-GLYCOPROTEIN; DRUG-DELIVERY; LINE CACO-2; ABSORPTION; PERMEABILITY; EFFLUX; METABOLISM;
D O I
10.1016/j.fct.2014.02.003
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Flavonoid isorhamnetin occurs in various plants and herbs, and demonstrates various biological effects in humans. This work will clarify the isorhamnetin absorption mechanism using the Caco-2 monolayer cell model. The isorhamnetin transport characteristics at different concentrations, pHs, temperatures, tight junctions and potential transporters were systemically investigated. lsorhamnetin was poorly absorbed by both passive diffusion and active transport mechanisms. Both trans- and paracellular pathways were involved during isorhamnetin transport. Active transport under an ATP-dependent transport mechanism was mediated by the organic anion transporting peptide (OATP); isorhamnetin's permeability from the apical to the basolateral side significantly decreased after estrone-3-sulfate was added (p < 0.01). Efflux transporters, P-glycoproteins (P-gp), breast cancer resistance proteins (BCRP) and multidrug resistance proteins (MRPs) participated in the isorhamnetin transport process. Among them, the MRPs (especially MRP2) were the main efflux transporters for isorhamnetin; transport from the apical to the basolateral side increased 10.8-fold after adding an MRP inhibitor (MK571). This study details isorhamnetin's cellular transport and elaborates isorhamnetin's absorption mechanisms to provide a foundation for further studies. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:313 / 320
页数:8
相关论文
共 50 条
  • [41] Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers
    Rege, BD
    Kao, JPY
    Polli, JE
    EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2002, 16 (4-5) : 237 - 246
  • [42] Transport characteristics of peptidomimetics. Effect of the pyrrolinone bioisostere on transport across Caco-2 cell monolayers
    Sudoh, M
    Pauletti, GM
    Yao, WQ
    Moser, W
    Yokoyama, A
    Pasternak, A
    Sprengeler, PA
    Smith, AB
    Hirschmann, R
    Borchardt, RT
    PHARMACEUTICAL RESEARCH, 1998, 15 (05) : 719 - 725
  • [43] Transepithelial Transport Characteristics of the Antihypertensive Peptide, Lys-Val-Leu-Pro-Val-Pro, in Human Intestinal Caco-2 Cell Monolayers
    Sun, Haiyan
    Liu, Dong
    Li, Shimin
    Qin, Zhenyu
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2009, 73 (02) : 293 - 298
  • [44] Transepithelial transport of hesperetin and hesperidin in intestinal Caco-2 cell monolayers
    Kobayashi, Shoko
    Tanabe, Soichi
    Sugiyama, Masanorl
    Konishi, Yutaka
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2008, 1778 (01): : 33 - 41
  • [45] The Effect of Hyperosmosis on Paracellular Permeability in Caco-2 Cell Monolayers
    Inokuchi, Hitoshi
    Takei, Takuto
    Aikawa, Katsuyoshi
    Shimizu, Makoto
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2009, 73 (02) : 328 - 334
  • [46] Evaluation on Intestinal Permeability of Phlorotannins Using Caco-2 Cell Monolayers
    Murata, Naoki
    Keitoku, Saki
    Miyake, Hideo
    Tanaka, Reiji
    Shibata, Toshiyuki
    NATURAL PRODUCT COMMUNICATIONS, 2022, 17 (01)
  • [47] Transepithelial transport of rosmarinic acid in intestinal Caco-2 cell monolayers
    Konishi, Y
    Kobayashi, S
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2005, 69 (03) : 583 - 591
  • [48] Transepithelial transport of artepillin C in intestinal Caco-2 cell monolayers
    Konishi, Y
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2005, 1713 (02): : 138 - 144
  • [49] In Vitro Study on the Transport of Zinc across Intestinal Epithelial Cells Using Caco-2 Monolayers and Isolated Rat Intestinal Membranes
    Yasuno, Tohru
    Okamoto, Hiroki
    Nagai, Miho
    Kimura, Shunsuke
    Yamamoto, Takanori
    Nagano, Kozue
    Furubayashi, Tomoyuki
    Yoshikawa, Yutaka
    Yasui, Hiroyuki
    Katsumi, Hidemasa
    Sakane, Toshiyasu
    Yamamoto, Akira
    BIOLOGICAL & PHARMACEUTICAL BULLETIN, 2012, 35 (04) : 588 - 593
  • [50] Transport Characteristics of Candesartan in Human Intestinal Caco-2 Cell Line
    Zhou, Lingjie
    Chen, Xiaoping
    Gu, Yuanqing
    Liang, Jianying
    BIOPHARMACEUTICS & DRUG DISPOSITION, 2009, 30 (05) : 259 - 264