Stable Crank-Nicolson Discretisation for Incompressible Miscible Displacement Problems of Low Regularity

被引:4
作者
Jensen, Max [1 ]
Mueller, Ruediger [2 ]
机构
[1] Univ Durham, Math Sci, Durham, England
[2] WIAS, Berlin, Germany
来源
NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009 | 2010年
关键词
D O I
10.1007/978-3-642-11795-4_50
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study the numerical approximation of incompressible miscible displacement problems with a linearised Crank-Nicolson time discretisation, combined with a mixed finite element and discontinuous Galerkin method. At the heart of the analysis is the proof of convergence under low regularity requirements. Numerical experiments demonstrate that the proposed method exhibits second-order convergence for smooth and robustness for rough problems.
引用
收藏
页码:469 / 477
页数:9
相关论文
共 5 条
[1]  
[Anonymous], 1997, SPRINGER SERIES COMP
[2]   DISCONTINUOUS GALERKIN FINITE ELEMENT CONVERGENCE FOR INCOMPRESSIBLE MISCIBLE DISPLACEMENT PROBLEMS OF LOW REGULARITY [J].
Bartels, Soeren ;
Jensen, Max ;
Mueller, Ruediger .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (05) :3720-3743
[3]  
Chen Zhangxin., 2007, Mathematical Techniques in Oil Recovery
[4]  
Feng X., 2002, CONT MATH, V295, P229
[5]  
Riviere B., 2009, CONVERGENCE DISCONTI