Life cycle assessment of bioethanol-based PVC. Part 1: Attributional approach

被引:31
作者
Alvarenga, Rodrigo A. F. [1 ]
Dewulf, Jo [2 ]
De Meester, Steven [2 ]
Wathelet, Alain [3 ]
Villers, Joseph [3 ]
Thommeret, Richard [3 ]
Hruska, Zdenek [4 ]
机构
[1] Univ Ghent, Fac Biosci Engn, B-9000 Ghent, Belgium
[2] Univ Ghent, Fac Biosci Engn, Res Grp EnVOC, B-9000 Ghent, Belgium
[3] Solvay SA Brussels, Brussels, Belgium
[4] Solvin GmbH Co KG Rheinberg, Rheinberg, Germany
来源
BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR | 2013年 / 7卷 / 04期
关键词
PVC; bioethanol; LCA; bio-based; environmental impact; ENVIRONMENTAL IMPACTS; SUGARCANE; EMISSIONS; ETHANOL; PLASTICS; RESOURCE; BRAZIL;
D O I
10.1002/bbb.1405
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Literature suggests that depletion of non-renewable resources is the most concerning environmental impact category in the life cycle of the polyvinyl chloride (PVC), mainly due to the fossil feedstock for ethylene. Therefore, bioethanol is considered as another source for ethylene in the PVC production chain. The objective of this review was to perform a cradle-to-gate attributional life cycle assessment (LCA) of bioethanol-based PVC resin. We created two scenarios for bioethanol-based PVC (2010 and 2018), and compared them with fossil-based PVC. We used primary data from Solvay S.A. and secondary data from the literature, for the life cycle inventory. For the impact assessment, we used several midpoint indicators and the ReCiPe Endpoint H/A. At midpoint level, bioethanol-based PVC from 2010 and 2018 presented better results than fossil-based PVC for non-renewable resource use (13.8, 13.4, and 44.8 MJ(ex)/kg of PVC resin, respectively) and climate change (-0.09, -0.19, and 1.52 kg CO(2)eq/kg of PVC resin, respectively), but worse results for other environmental impact categories (e.g. ecotoxicity). At endpoint level, the two bioethanol-based PVC scenarios showed better results overall than fossil-based PVC (up to 66% lower). Within the bioethanol-based PVC scenarios, the results for 2018 were better than for 2010 (up to 43% lower for the endpoint single score results) corroborating that higher efficiency (at the crop field and bioethanol production) and reduction of burnt harvest ought to reduce environmental impacts. Even though bioethanol-based PVC had better results in comparison to fossil-based, improvements should be sought to minimize other environmental impact categories, for example, biodiversity and ecotoxicity. (c) 2013 Society of Chemical Industry and John Wiley & Sons, Ltd
引用
收藏
页码:386 / 395
页数:10
相关论文
共 42 条
[1]   Life cycle assessment of bioethanol-based PVC. Part 2: Consequential approach [J].
Alvarenga, Rodrigo A. F. ;
Dewulf, Jo ;
De Meester, Steven ;
Wathelet, Alain ;
Villers, Joseph ;
Thommeret, Richard ;
Hruska, Zdenek .
BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2013, 7 (04) :396-405
[2]   Exergy-based accounting for land as a natural resource in life cycle assessment [J].
Alvarenga, Rodrigo A. F. ;
Dewulf, Jo ;
Van Langenhove, Herman ;
Huijbregts, Mark A. J. .
INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2013, 18 (05) :939-947
[3]   Sustainability of bio-based plastics: general comparative analysis and recommendations for improvement [J].
Alvarez-Chavez, Clara Rosalia ;
Edwards, Sally ;
Moure-Eraso, Rafael ;
Geiser, Kenneth .
JOURNAL OF CLEANER PRODUCTION, 2012, 23 (01) :47-56
[4]  
[Anonymous], 2010, ECOINVENT DATABASE 2
[5]  
[Anonymous], PROT AGR SET SUCR PA
[6]  
[Anonymous], 2007, AR4 CLIM CHANG 2007
[7]  
[Anonymous], RECIPE 2008 LIFE CYC
[8]  
[Anonymous], 118 INT CRIS GROUP
[9]   Life cycle assessment of PVC in product optimisation and green procurement - fact-based decisions towards sustainable solutions [J].
Baitz, M ;
Kreissig, J ;
Makishi, C .
PLASTICS RUBBER AND COMPOSITES, 2005, 34 (03) :95-98
[10]  
Baitz M., 2004, LIFE CYCLE ASSESSMEN