Ultrafast carrier dynamics in semiconductor nanowires

被引:73
作者
Prasankumar, Rohit P. [1 ]
Upadhya, Prashanth C. [1 ]
Taylor, Antoinette J. [1 ]
机构
[1] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2009年 / 246卷 / 09期
关键词
RESOLVED TERAHERTZ SPECTROSCOPY; ZNO TETRAPOD NANOWIRES; ZINC-OXIDE NANOWIRES; LIQUID-SOLID GROWTH; SILICON NANOWIRES; QUANTUM WIRES; STIMULATED-EMISSION; GAN-NANOWIRES; ELECTRONIC-PROPERTIES; ROOM-TEMPERATURE;
D O I
10.1002/pssb.200945128
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Semiconductor nanowires (NWs) are nanostructures with a number of novel optical and electronic properties that offer great promise for applications in areas including nanoelectronics, thermoelectrics sensing and nanophotonics. To realize the full potential of these unique nanosystems, however, a deep understanding of their response to optical excitation on a sub-picosecond time scale is required. Here we review recent ultrafast optical studies of carrier dynamics in semiconductor NWs. These experiments have been performed on different materials as a function of both intrinsic NW parameters such as diameter and doping as well as experimental parameters including photoexcited carrier density and wavelength. A variety of phenomena, including one-dimensional (1D) exciton dynamics, rapid carrier trapping at surface and bulk defects, and lasing from an electron-hole plasma (EHP) have been observed. These first measurements of ultrafast carrier dynamics are a tantalizing hint of the rich physics yet to be discovered in these quasi-1D systems. [GRAPHICS] Ultrafast optical spectroscopy can track the temporal evolution of carrier populations in semiconductor NWs with femtosecond time resolution. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1973 / 1995
页数:23
相关论文
共 130 条
[1]   Semiconductor nanowires: optics and optoelectronics [J].
Agarwal, R. ;
Lieber, C. M. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2006, 85 (03) :209-215
[2]   Lasing in single cadmium sulfide nanowire optical cavities [J].
Agarwal, R ;
Barrelet, CJ ;
Lieber, CM .
NANO LETTERS, 2005, 5 (05) :917-920
[3]   Energy level structure and electron relaxation times in InAs/InxGa1-xAs quantum dot-in-a-well structures [J].
Aivaliotis, P. ;
Menzel, S. ;
Zibik, E. A. ;
Cockburn, J. W. ;
Wilson, L. R. ;
Hopkinson, M. .
APPLIED PHYSICS LETTERS, 2007, 91 (25)
[4]  
Alfano R. R., 2006, The Supercontinuum Laser Source: Fundamentals with Updated References
[5]   High-resolution detection of Au catalyst atoms in Si nanowires [J].
Allen, Jonathan E. ;
Hemesath, Eric R. ;
Perea, Daniel E. ;
Lensch-Falk, Jessica L. ;
Li, Z. Y. ;
Yin, Feng ;
Gass, Mhairi H. ;
Wang, Peng ;
Bleloch, Andrew L. ;
Palmer, Richard E. ;
Lauhon, Lincoln J. .
NATURE NANOTECHNOLOGY, 2008, 3 (03) :168-173
[6]  
[Anonymous], 2003, Principles of Nonlinear Optics
[7]   High power ultrafast lasers [J].
Backus, S ;
Durfee, CG ;
Murnane, MM ;
Kapteyn, HC .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1998, 69 (03) :1207-1223
[8]   CALCULATIONS OF FEMTOSECOND DIFFERENTIAL OPTICAL-TRANSMISSION IN GERMANIUM [J].
BAILEY, DW ;
STANTON, CJ .
JOURNAL OF APPLIED PHYSICS, 1995, 77 (05) :2107-2115
[9]   Giant anisotropy of second harmonic generation for a single ZnSe nanowire [J].
Barzda, V. ;
Cisek, R. ;
Spencer, T. L. ;
Philipose, U. ;
Ruda, H. E. ;
Shik, A. .
APPLIED PHYSICS LETTERS, 2008, 92 (11)
[10]   Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy [J].
Baxter, Jason B. ;
Schmuttenmaer, Charles A. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (50) :25229-25239