THE HOPF ALGEBRAS OF SYMMETRIC FUNCTIONS AND QUASI-SYMMETRIC FUNCTIONS IN NON-COMMUTATIVE VARIABLES ARE FREE AND CO-FREE

被引:35
作者
Bergeron, Nantel [1 ]
Zabrocki, Mike [1 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
关键词
Hopf algebras; set partitions; set compositions; symmetric functions; quasi-symmetric functions;
D O I
10.1142/S0219498809003485
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We uncover the structure of the space of symmetric functions in non-commutative variables by showing that the underlined Hopf algebra is both free and co-free. We also introduce the Hopf algebra of quasi-symmetric functions in non-commutative variables and de. ne the product and coproduct on the monomial basis of this space and show that this Hopf algebra is free and co-free. In the process of looking for bases which generate the space we de. ne orders on the set partitions and set compositions which allow us to de. ne bases which have simple and natural rules for the product of basis elements.
引用
收藏
页码:581 / 600
页数:20
相关论文
共 16 条
[1]  
Aguiar Marcelo, 2006, Fields Institute Monographs, V23
[2]   Posets related to the connectivity set of Coxeter groups [J].
Bergeron, N. ;
Hohlweg, C. ;
Zabrocki, M. .
JOURNAL OF ALGEBRA, 2006, 303 (02) :831-846
[3]  
Bergeron N, 2006, ELECTRON J COMB, V13
[4]   Invariants and coinvariants of the symmetric group in noncommuting variables [J].
Bergeron, Nantel ;
Reutenauer, Christophe ;
Rosas, Mercedes ;
Zabrocki, Mike .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (02) :266-296
[5]  
BERGERONBRLEK A, 2008, 20 ANN INT C FORM PO
[6]  
HIVERT F, 2004, THESIS
[7]   Commutative combinatorial Hopf algebras [J].
Hivert, Florent ;
Novelli, Jean-Christophe ;
Thibon, Jean-Yves .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2008, 28 (01) :65-95
[8]   Construction of dendriform trialgebras. [J].
Novelli, JC ;
Thibon, JY .
COMPTES RENDUS MATHEMATIQUE, 2006, 342 (06) :365-369
[9]  
POIRIER S, 1995, ANN SCI MATH QUEBEC, V19, P7990
[10]  
REUTENAUER C., 1993, London Math. Soc. Monogr. (N.S.), V7