Analytical, Semi-Analytical, and Numerical Heavy-Gas Verification Benchmarks of the Effective Multiplication Factor and Temperature Coefficient

被引:0
作者
Gonzales, Matthew A. [1 ]
Kiedrowski, Brian C. [2 ]
Prinja, Anil K. [3 ]
Brown, Forrest B. [4 ]
机构
[1] Sandia Natl Labs, Integrated Syst Assessment, 1515 Eubank, Albuquerque, NM 87123 USA
[2] Univ Michigan, Dept Nucl Engn & Radiol Sci, 2355 Bonisteel Blvd, Ann Arbor, MI 48109 USA
[3] Univ New Mexico, Dept Nucl Engn, 1 Univ New Mexico, Albuquerque, NM 87131 USA
[4] Los Alamos Natl Lab, X Computat Phys Div, POB 1663, Los Alamos, NM 87545 USA
关键词
Neutron scattering; thermalization; Monte Carlo; NEUTRON THERMALIZATION; MODERATOR;
D O I
10.1080/00295639.2018.1442546
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The heavy-gas model with specific energy-dependent absorption cross sections is used to construct analytical, semi-analytical, and numerical free-gas scattering benchmarks for the neutron spectrum, effective multiplication factor k, and temperature coefficient alpha(T) in an infinite, homogeneous medium. The energy dependences considered are piecewise constant, constant plus inverse in energy, and piecewise linear. Analytic forms for k and alpha(T) in terms of hypergeometric functions are obtained for piecewise-constant absorption with two energy ranges and for constant-plus-inverse-in-energy absorption. Analogous semi-analytical integral expressions are obtained for piecewise-linear absorption with two energy ranges. Numerical solutions of a linear system are obtained for piecewise-constant and piecewise-linear absorption for greater than two energy ranges. The heavy-gas model solutions of k are compared with continuous-energy Monte Carlo calculations; the results converge to the heavy-gas model with increasing target mass ratio A, demonstrating the heavy-gas model's utility as a verification benchmark.
引用
收藏
页码:1 / 45
页数:45
相关论文
共 15 条
  • [1] Derivatives of any order of the confluent hypergeometric function 1F1(a,b,z) with respect to the parameter a or b
    Ancarani, L. U.
    Gasaneo, G.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (06)
  • [2] [Anonymous], 2015, MATLAB V8 60
  • [3] Brown F. B., 2002, Transactions of the American Nuclear Society, V87, P230
  • [4] Carter L.L., 1975, PARTICLE TRANSPORT S
  • [5] COHEN ER, 1957, NUCL SCI ENG, V2, P227
  • [6] CORNGOLD N., 1962, P BNL C NEUTRON THER, P1075
  • [7] Coveyou R.R., 1954, Journal of Nuclear Energy, V2, P153, DOI DOI 10.1016/0891-3919(55)90030-9
  • [8] DAALHUIS A. B. O., 2017, DIGITAL LIB MATH FUN
  • [9] GONZALES M. A., 2016, T AM NUCL SOC, V115, P1152
  • [10] GONZALES M. A., 2016, THESIS