Identification of a source for parabolic and hyperbolic equations with a parameter

被引:4
|
作者
Abasheeva, N. L. [1 ]
机构
[1] Russian Acad Sci, Sobolev Inst Math, Siberian Branch, Novosibirsk 630090, Russia
来源
基金
俄罗斯基础研究基金会;
关键词
Inverse problem; parabolic equation; hyperbolic equation; INVERSE PROBLEMS;
D O I
10.1515/JIIP.2009.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider an inverse problem of identification of a right-hand side in a second order parabolic and hyperbolic equations with a parameter. We prove theorems on existence and uniqueness of solutions to these problems.
引用
收藏
页码:527 / 544
页数:18
相关论文
共 50 条
  • [41] On family of potential wells and applications to semilinear hyperbolic equations and parabolic equations
    Chen, Tianlong
    Chen, Yuxuan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 198
  • [42] ON EQUATIONS OF MIXED TYPE AND HYPERBOLIC-PARABOLIC EQUATIONS WITH DISCONTINUOUS COEFFICIENTS
    KARATOPRAKLIEVA, MG
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1985, 38 (11): : 1453 - 1456
  • [43] CONTROL OF HYPERBOLIC AND PARABOLIC EQUATIONS ON NETWORKS AND SINGULAR LIMITS
    Barcena-Petisco, Jon Asier
    Cavalcante, Marcio
    Coclite, Giuseppe Maria
    De Nitti, Nicola
    Zuazua, Enrique
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2024,
  • [44] Counterexamples in inverse problems for parabolic, elliptic, and hyperbolic equations
    A. B. Kostin
    Computational Mathematics and Mathematical Physics, 2014, 54 : 797 - 810
  • [45] Stability of difference schemes for hyperbolic-parabolic equations
    Ashyralyev, A
    Ozdemir, Y
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (8-9) : 1443 - 1476
  • [46] INERTIAL MANIFOLDS FOR THE HYPERBOLIC RELAXATION OF SEMILINEAR PARABOLIC EQUATIONS
    Chepyzhov, Vladimir V.
    Kostianko, Anna
    Zelik, Sergey
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (03): : 1115 - 1142
  • [47] Counterexamples in inverse problems for parabolic, elliptic, and hyperbolic equations
    Kostin, A. B.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2014, 54 (05) : 797 - 810
  • [48] SINGULAR PERTURBATIONS OF A CLASS OF NONLINEAR HYPERBOLIC AND PARABOLIC EQUATIONS
    MURRAY, JD
    JOURNAL OF MATHEMATICS AND PHYSICS, 1968, 47 (02): : 111 - &
  • [49] Spectral Method in the Theory of Parabolic-Hyperbolic Equations
    Kapustin, Nikolay
    PROCEEDINGS OF THE 43RD INTERNATIONAL CONFERENCE APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'17), 2017, 1910
  • [50] Multiscale homogenization of nonlinear hyperbolic-parabolic equations
    Abdelhakim Dehamnia
    Hamid Haddadou
    Applications of Mathematics, 2022, 68 : 153 - 169