GA-SVM Algorithm for Improving Land-Cover Classification Using SAR and Optical Remote Sensing Data

被引:139
|
作者
Sukawattanavijit, Chanika [1 ]
Chen, Jie [1 ,2 ]
Zhang, Hongsheng [3 ]
机构
[1] Beihang Univ, Sch Elect & Informat Engn, Beijing 100191, Peoples R China
[2] Collaborat Innovat Ctr Geospatial Technol, Wuhan 430079, Peoples R China
[3] Chinese Univ Hong Kong, Inst Space & Earth Informat Sci, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Genetic algorithms (GAs); image fusion; land-cover classification; multisource data; optical imagery; support vector machine (SVM); synthetic aperture radar (SAR); SUPPORT VECTOR MACHINES; FUSION;
D O I
10.1109/LGRS.2016.2628406
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Multisource remote sensing data have been widely used to improve land-cover classifications. The combination of synthetic aperture radar (SAR) and optical imagery can detect different land-cover types, and the use of genetic algorithms (GAs) and support vector machines (SVMs) can lead to improved classifications. Moreover, SVM kernel parameters and feature selection affect the classification accuracy. Thus, a GA was implemented for feature selection and parameter optimization. In this letter, a GA-SVM algorithm was proposed as a method of classifying multifrequency RADARSAT-2 (RS2) SAR images and Thaichote (THEOS) multispectral images. The results of the GA-SVM algorithm were compared with those of the grid search algorithm, a traditional method of parameter searching. The results showed that the GA-SVM algorithm outperformed the grid search approach and provided higher classification accuracy using fewer input features. The images obtained by fusing RS2 data and THEOS data provided high classification accuracy at over 95%. The results showed improved classification accuracy and demonstrated the advantages of using the GA-SVM algorithm, which provided the best accuracy using fewer features.
引用
收藏
页码:284 / 288
页数:5
相关论文
共 50 条
  • [41] LAND-COVER CLASSIFICATION WITH AN EXPERT CLASSIFICATION ALGORITHM USING DIGITAL AERIAL PHOTOGRAPHS
    Perea, Alberto J.
    Merono, Jose E.
    Aguilera, Maria J.
    de la Cruz, Jose L.
    SOUTH AFRICAN JOURNAL OF SCIENCE, 2010, 106 (5-6) : 82 - 87
  • [42] Land-cover Classification using Multi-temporal/polarization C-band SAR Data
    Park, No-Wook
    Chi, Kwang-Hoon
    2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 188 - 191
  • [43] A REMOTE-SENSING BASED VEGETATION CLASSIFICATION LOGIC FOR GLOBAL LAND-COVER ANALYSIS
    RUNNING, SW
    LOVELAND, TR
    PIERCE, LL
    NEMANI, R
    HUNT, ER
    REMOTE SENSING OF ENVIRONMENT, 1995, 51 (01) : 39 - 48
  • [44] Comparison of classifiers of remote-sensing data for land-use/land-cover mapping
    Dwivedi, RS
    Kandrika, S
    Ramana, KV
    CURRENT SCIENCE, 2004, 86 (02): : 328 - 335
  • [45] A Remote Sensing Land Cover Classification Algorithm Based on Attention Mechanism
    Zhang, Xiaolu
    Wang, Zhaoshun
    Cao, Lianyu
    Wang, Mang
    CANADIAN JOURNAL OF REMOTE SENSING, 2021, 47 (06) : 835 - 845
  • [46] A hierarchical fuzzy clustering algorithm using pyramid linking data and land-cover classification experiments
    Naka, M
    Miyazaki, T
    Iwata, Y
    IGARSS '96 - 1996 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM: REMOTE SENSING FOR A SUSTAINABLE FUTURE, VOLS I - IV, 1996, : 781 - 783
  • [47] Monitoring land-cover changes in Mediterranean coastal dunes, northwest Tunisia, using remote sensing data
    Touhami, Issam
    Aouinti, Hamdi
    Khabthani, Mohamed A.
    Bergaoui, Kaouther
    Chirino, Esteban
    Rzigui, Touhami
    Bellot, Juan
    Khaldi, Abdelhamid
    Khouja, Mohamed L.
    Mannai-Tayech, Beya
    NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2022, 50 (03)
  • [48] Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data
    Kussul, Nataliia
    Lavreniuk, Mykola
    Skakun, Sergii
    Shelestov, Andrii
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (05) : 778 - 782
  • [49] A self-trained semisupervised SVM approach to the remote sensing land cover classification
    Liu, Ying
    Zhang, Bai
    Wang, Li-min
    Wang, Nan
    COMPUTERS & GEOSCIENCES, 2013, 59 : 98 - 107
  • [50] Classification of Schizophrenia using Genetic Algorithm-Support Vector Machine (GA-SVM)
    Hiesh, Ming-Hsien
    Andy, Yan-Yu Lam
    Shen, Chia-Ping
    Chen, Wei
    Lin, Feng-Shen
    Sung, Hsiao-Ya
    Lin, Jeng-Wei
    Chiu, Ming-Jang
    Lai, Feipei
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 6047 - 6050