Output Tracking of Uncertain Fractional-order Systems via Robust Iterative Learning Sliding Mode Control

被引:6
作者
Razmjou, Ehsan-Ghotb [2 ]
Sani, Seyed Kamal-Hosseini [1 ]
Jalil-Sadati, Seyed [3 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Elect Engn, Control Engn Dept, Mashhad, Iran
[2] Ferdowsi Univ Mashhad, Dept Elect Engn, Mashhad, Iran
[3] Babol Univ Technol, Fac Elect & Comp Engn, Control Engn, Babol Sar, Iran
关键词
Fractional order systems; Sliding mode control; Iterative learning technique; Robust control; Partial and complete observability; SYNCHRONIZATION; DESIGN; CHAOS;
D O I
10.5370/JEET.2017.13.4.1704
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper develops a novel controller called iterative learning sliding mode (ILSM) to control linear and nonlinear fractional-order systems. This control applies a combination structures of continuous and discontinuous controller, conducts the system output to the desired output and achieve better control performance. This controller is designed in the way to be robust against the external disturbance. It also estimates unknown parameters of fractional-order systems. The proposed controller unlike the conventional iterative learning control for fractional systems does not need to apply direct control input to output of the system. It is shown that the controller perform well in partial and complete observable conditions. Simulation results demonstrate very good performance of the iterative learning sliding mode controller for achieving the desired control objective by increasing the number of iterations in the control loop.
引用
收藏
页码:1704 / 1713
页数:10
相关论文
共 28 条
  • [1] Chaos in fractional-order autonomous nonlinear systems
    Ahmad, WM
    Sprott, JC
    [J]. CHAOS SOLITONS & FRACTALS, 2003, 16 (02) : 339 - 351
  • [3] Fractional terminal sliding mode control design for a class of dynamical systems with uncertainty
    Dadras, Sara
    Momeni, Hamid Reza
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (01) : 367 - 377
  • [4] Fractional-order diffusion-wave equation
    ElSayed, AMA
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (02) : 311 - 322
  • [5] Chaos synchronization of fractional order modified duffing systems with parameters excited by a chaotic signal
    Ge, Zheng-Ming
    Ou, Chan-Yi
    [J]. CHAOS SOLITONS & FRACTALS, 2008, 35 (04) : 705 - 717
  • [6] Fractional Order Calculus: Basic Concepts and Engineering Applications
    Gutierrez, Ricardo Enrique
    Rosario, Joao Mauricio
    Machado, Jose Tenreiro
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2010, 2010
  • [7] Experimental Application of Hybrid Fractional-Order Adaptive Cruise Control at Low Speed
    Hassan Hosseinnia, S.
    Tejado, Ines
    Milanes, Vicente
    Villagra, Jorge
    Vinagre, Blas M.
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2014, 22 (06) : 2329 - 2336
  • [8] Fractional-order reset control: Application to a servomotor
    Hassan HosseinNia, S.
    Tejado, Ines
    Vinagre, Blas M.
    [J]. MECHATRONICS, 2013, 23 (07) : 781 - 788
  • [9] Sliding mode synchronization of an uncertain fractional order chaotic system
    Hosseinnia, S. H.
    Ghaderi, R.
    Ranjbar, A. N.
    Mahmoudian, M.
    Momani, S.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) : 1637 - 1643
  • [10] Jenson Victor George, 1997, MATH METHODCHEM EN