The ECommerce Information Model driven semantic searching algorithm

被引:0
作者
Ling, Yun [1 ]
Yi, Ouyang [1 ]
Li, Biwei [1 ]
机构
[1] Zhejiang Gongshang Univ, Coll Comp & Informat Engn, Hangzhou 310035, Peoples R China
来源
DCABES 2006 PROCEEDINGS, VOLS 1 AND 2 | 2006年
关键词
semantic search; similarity; ECommerce; information content;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To make ECommerce information searching across Internet more efficient, ECommerce information searching becomes more and more important. In this paper, ECommerce Information Model (EIM) and a novel EIM-based semantic similarity algorithm are presented. This semantic similarity algorithm utilizes ECommerce-based information content and edge-based distance in calculating conceptual similarity. According to EIM, a semantic eigenvector, which consists of the semantic similarity values of a given document, is used to represent the semantic content of the document. The semantic eigenvectors and EIM-based similarity function could be applied to ECommerce information retrieval. Experimental results show that the performance of the proposed method is much improved when compared with that of the traditional Information retrieval techniques.
引用
收藏
页码:840 / 844
页数:5
相关论文
共 10 条
  • [1] BANERJEE S, 2002, P 3 INT C INT TEXT P, P136
  • [2] BERNERSLEE T, 2001, SCI AM 0517, P279
  • [3] IDO DG, 1999, MACHINE LEARNING, V34
  • [4] Leacock C, 1998, LANG SPEECH & COMMUN, P265
  • [5] Lin D., 1998, P 15 INT C MACH LEAR
  • [6] Miller George A., 1990, International Journal of Lexicography, V3, P245, DOI [DOI 10.1093/IJL/3.4.245, 10.1093/ijl/3.4.245]
  • [7] DEVELOPMENT AND APPLICATION OF A METRIC ON SEMANTIC NETS
    RADA, R
    MILI, H
    BICKNELL, E
    BLETTNER, M
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1989, 19 (01): : 17 - 30
  • [8] Resnik P, 1995, INT JOINT CONF ARTIF, P448
  • [9] RICHARDSON AF, 1995, USING WORDNET KNOWLE
  • [10] TVERSKY A, 1977, PSYCHOL REV, V84, P327, DOI 10.1037/h0026750