A Transfinite Knuth-Bendix Order for Lambda-Free Higher-Order Terms

被引:14
作者
Becker, Heiko [1 ]
Blanchette, Jasmin Christian [2 ,3 ,4 ]
Waldmann, Uwe [4 ]
Wand, Daniel [4 ,5 ]
机构
[1] Max Planck Inst Softwaresyst, Saarbrucken, Germany
[2] Vrije Univ Amsterdam, Amsterdam, Netherlands
[3] Inria Nancy Grand Est, Villers Les Nancy, France
[4] Max Planck Inst Informat, Saarbrucken, Germany
[5] Tech Univ Munich, Munich, Germany
来源
AUTOMATED DEDUCTION - CADE 26 | 2017年 / 10395卷
基金
欧洲研究理事会;
关键词
TERMINATION; PATH; LOGIC;
D O I
10.1007/978-3-319-63046-5_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We generalize the Knuth-Bendix order (KBO) to higher-order terms without lambda-abstraction. The restriction of this new order to first-order terms coincides with the traditional KBO. The order has many useful properties, including transitivity, the subterm property, compatibility with contexts (monotonicity), stability under substitution, and well-foundedness. Transfinite weights and argument coefficients can also be supported. The order appears promising as the basis of a higher-order superposition calculus.
引用
收藏
页码:432 / 453
页数:22
相关论文
共 50 条
[1]  
Andrews P.B, 1977, IJCAI, P566
[2]  
[Anonymous], 2010, Archive of Formal Proofs
[3]  
[Anonymous], 1998, Term Rewriting and All That
[4]  
Aoto T, 2003, LECT NOTES COMPUT SC, V2706, P380
[5]   Analytic Tableaux for Higher-Order Logic with Choice [J].
Backes, Julian ;
Brown, Chad Edward .
JOURNAL OF AUTOMATED REASONING, 2011, 47 (04) :451-479
[6]   Generalised multisets for chemical programming [J].
Banatre, J. -P. ;
Fradet, P. ;
Radenac, Y. .
MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2006, 16 (04) :557-580
[7]  
Becker H, 2017, TRANSFINITE KNUTH BE
[8]  
Beeson M, 2004, LECT NOTES ARTIF INT, V3097, P460
[9]  
Benzmuller C., 1998, Automated Deduction - CADE-15. 15th International Conference on Automated Deduction. Proceedings, P56, DOI 10.1007/BFb0054248
[10]  
Benzmuller C., 2014, Handbook of the History of Logic, Volume 9, Computational Logic, P215