Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems

被引:106
作者
Lakkis, Omar [1 ]
Makridakis, Charalambos
机构
[1] Univ Sussex, Dept Math, Brighton BN1 9RF, E Sussex, England
[2] Univ Crete, Dept Appl Math, GR-71409 Iraklion, Greece
[3] Fdn Res & Technol Hellas, Inst Appl & Computat Math, GR-71110 Iraklion, Greece
关键词
D O I
10.1090/S0025-5718-06-01858-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive a posteriori error estimates for fully discrete approximations to solutions of linear parabolic equations. The space discretization uses finite element spaces that are allowed to change in time. Our main tool is an appropriate adaptation of the elliptic reconstruction technique, introduced by Makridakis and Nochetto. We derive novel a posteriori estimates for the norms of L infinity(0, T; L-2(Omega)) and the higher order spaces, L infinity(0, T; H-1(Omega)) and H-1(0, T; L-2(Omega)), with optimal orders of convergence.
引用
收藏
页码:1627 / 1658
页数:32
相关论文
共 34 条
[1]   A posteriori error estimation for the finite element method-of-lines solution of parabolic problems [J].
Adjerid, S ;
Flaherty, JE ;
Babuska, I .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (02) :261-286
[2]  
Ainsworth M, 2000, PUR AP M-WI, DOI 10.1002/9781118032824
[3]  
Akrivis G, 2006, MATH COMPUT, V75, P511, DOI 10.1090/S0025-5718-05-01800-4
[4]   A posteriori error estimation for the semidiscrete finite element method of parabolic differential equations [J].
Babuska, I ;
Ohnimus, S .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (35-36) :4691-4712
[5]  
Babuska I, 2001, NUMER MATH, V89, P225, DOI 10.1007/s002110100228
[6]  
Bergam A, 2005, MATH COMPUT, V74, P1117, DOI 10.1090/S0025-5718-04-01697-7
[7]  
Braess D., 2001, FINITE ELEMENTS
[8]  
Brenner S. C., 2007, Texts Appl. Math., V15
[9]   An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems [J].
Chen, ZM ;
Feng, J .
MATHEMATICS OF COMPUTATION, 2004, 73 (247) :1167-1193
[10]  
Ciarlet PG, 1978, STUDIES MATH ITS APP, V4