The quantum orbifold cohomology of weighted projective spaces

被引:54
作者
Coates, Tom [1 ]
Corti, Alessio [1 ]
Lee, Yuan-Pin [2 ]
Tseng, Hsian-Hua [3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[3] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
美国国家科学基金会;
关键词
GROMOV-WITTEN INVARIANTS; DELIGNE-MUMFORD STACKS; CHEN-RUAN COHOMOLOGY; RATIONAL CURVES; TORUS ACTIONS; VARIETIES; HOMOLOGY; RING;
D O I
10.1007/s11511-009-0035-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We calculate the small quantum orbifold cohomology of arbitrary weighted projective spaces. We generalize Givental's heuristic argument, which relates small quantum cohomology to S (1)-equivariant Floer cohomology of loop space, to weighted projective spaces and use this to conjecture an explicit formula for the small J-function, a generating function for certain genus-zero Gromov-Witten invariants. We prove this conjecture using a method due to Bertram. This provides the first non-trivial example of a family of orbifolds of arbitrary dimension for which the small quantum orbifold cohomology is known. In addition we obtain formulas for the small J-functions of weighted projective complete intersections satisfying a combinatorial condition; this condition naturally singles out the class of orbifolds with terminal singularities.
引用
收藏
页码:139 / 193
页数:55
相关论文
共 34 条
[1]   Twisted bundles and admissible covers [J].
Abramovich, D ;
Corti, A ;
Vistoli, A .
COMMUNICATIONS IN ALGEBRA, 2003, 31 (08) :3547-3618
[2]  
ABRAMOVICH D, 2002, CONT MATH, V310, P1
[3]  
Abramovich D, 2008, AM J MATH, V130, P1337
[4]   On the global quotient structure of the space of twisted stable maps to a quotient stack [J].
Abramovich, Dan ;
Graber, Tom ;
Olsson, Martin ;
Tseng, Hsian-Hua .
JOURNAL OF ALGEBRAIC GEOMETRY, 2007, 16 (04) :731-751
[5]   Toric arc schemes and quantum cohomology of toric varieties [J].
Arkhipov, Sergey ;
Kapranov, Mikhail .
MATHEMATISCHE ANNALEN, 2006, 335 (04) :953-964
[6]   THE MOMENT MAP AND EQUIVARIANT CO-HOMOLOGY [J].
ATIYAH, MF ;
BOTT, R .
TOPOLOGY, 1984, 23 (01) :1-28
[7]  
AUSTIN DM, 1995, PROG MATH, V133, P123
[8]   The intrinsic normal cone [J].
Behrend, K ;
Fantechi, B .
INVENTIONES MATHEMATICAE, 1997, 128 (01) :45-88
[9]   Another way to enumerate rational curves with torus actions [J].
Bertram, A .
INVENTIONES MATHEMATICAE, 2000, 142 (03) :487-512
[10]   The orbifold Chow ring of toric Deligne-Mumford stacks [J].
Borisov, LA ;
Chen, L ;
Smith, GG .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (01) :193-215